
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2013-01-16

Animating Non-Rigid Bodies Using Motion
Capture
Jie Long
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Long, Jie, "Animating Non-Rigid Bodies Using Motion Capture" (2013). All Theses and Dissertations. 3396.
https://scholarsarchive.byu.edu/etd/3396

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3396?utm_source=scholarsarchive.byu.edu%2Fetd%2F3396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Animating Non-Rigid Bodies Using Motion Capture

Jie Long

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Michael Jones, Chair
Parris Egbert
Bryan Morse
Eric Mercer

Sean Warnick

Department of Computer Science

Brigham Young University

January 2013

Copyright c© 2013 Jie Long

All Rights Reserved

www.manaraa.com

ABSTRACT

Animating Non-Rigid Bodies Using Motion Capture

Jie Long
Department of Computer Science, BYU

Doctor of Philosophy

Simulating the motion of a non-rigid body under external forces is a difficult problem
because of the complexity and flexibility of the non-rigid geometry and its associated dynamics.
Physically based animation of objects moving in the wind is computationally expensive, so
simulation-based approaches oversimplify the model by ignoring important effects, such as
tree’s sheltering. Motion capture records actual responses of a non-rigid body to external
forces and helps solve these problems. Mainly focusing on natural trees and ropes as instances
of non-rigid bodies, we present a new approach to building motion for objects in wind using
incomplete motion capture data from non-rigid bodies. The incomplete motion capture
data are automatically labeled by a cluster-based algorithm while noises are removed. For
places with no motion capture data, we estimate forces and motion by interpolating the
motion capture data according to the object’s characteristics. We discuss a physically or
statistically based approach to animate the whole non-rigid object. Basing our work on the
collected motion capture data and the estimated motions, we can produce visually plausible
and scalable animations of non-rigid objects under external forces at interactive frame rates.

Keywords: Motion capture, non-rigid bodies, plant modeling, wind dynamics, particle flow

www.manaraa.com

ACKNOWLEDGMENTS

Growing up I dreamed of being a scientist, but I did not even know what a real

scientist was . Five years ago, BYU opened its arms to me to help me pursue a career as a

scientist. My life has been changed dramatically in ways I could not even imagine years ago

. I have so much gratitude to BYU and the Computer Science Department for having me

here, as well as gratitude for my family, friends, and colleagues for all their support. I am

truly and deeply indebted to so many people that there is no way to acknowledge them all,

or even any of them, properly, with the limit of words here.

I would like to express my deepest gratitude to my advisor, Dr. Michael Jones. It was

my great pleasure to work with him in the Computer Generated Natural Phenomena Lab . I

am extremely grateful for his help, support, and encouragement over the last five years. I

was impressed by his honest and humble personality as well as his sense of humor. I really

appreciate his patience in guiding me in my research area. He has all of my respect as a

lifelong best friend and mentor.

Besides my advisor, I am grateful to my thesis committee: Dr. Parris Egbert, Dr.

Bryan Morse, Dr. Eric Mercer, and Dr. Sean Warnick. Thank you for your time and efforts

in reviewing all my documents and materials. I appreciate all the encouragement, insightful

comments, and hard questions. With all these, I am growing up and becoming a real

researcher.

Thanks to my colleagues for stimulating discussions and a fun environment. I am

especially grateful to Anthony Selino, Seth Holladay, Lanny Lin, Cory Reimschussel, Anthony

Hall, Bryce Porter, Tonglaga Bao, and Ontario Britton at BYU. We are good friends learning

and growing together.

I would like to thank my parents, Zeyu and Minglu, for their unconditional support.

If not for them, there would be no me . Thank you for teaching me to be an honest person in

all the good and bad times. Thank you for always supporting me and standing on my side. I

www.manaraa.com

would also like to especially thank my grandmas. Both of them have left our world but I

know they and their love will be with me no matter whom I am and where I am, forever.

Most of all I would like to thank my husband, Steve, who always gave me love and

encouragement. Thank you for your protection and supporting a lovely place for me to stay

and be able to concentrate on my study and research.

BYU accepted me and taught me how to be a good and useful person in our society. I

have learned to do scientific research, which is one of the most important parts for why I am

here. The world is our campus. I will remember the school’s instructions and use them as my

guidance in my future career and life. My learning will not stop upon receiving my degree,

but will move forward to the bigger world campus. I believe that, all the things I’ve learned

from here, in terms of being a good person in both my professional career and personal life,

will benefit me for now and the future. I am so proud that I could have the chance to be

stamped by BYU.

www.manaraa.com

Table of Contents

List of Figures ix

1 Background, Motivation, and Overview 1

1.1 Thesis Statement . 4

1.2 Publications . 5

2 Motion Capture for a Natural Tree in the Wind 9

2.1 Introduction . 10

2.2 Related Work . 11

2.2.1 Static Tree Modeling . 11

2.2.2 Animation of Trees . 12

2.2.3 Motion Capture . 14

2.3 Motion Capture . 14

2.4 Build Static Tree Geometries . 16

2.4.1 Skeleton and Topology Estimation 16

2.4.2 Geometry of Branches and Leaves . 19

2.5 Build Tree Motion . 20

2.5.1 Filter-based Noise Detection and Removal 20

2.5.2 Small Gaps in Data . 20

2.5.3 Large Gaps in Data . 21

2.5.4 Leaf Motions . 23

2.6 Results . 23

v

www.manaraa.com

2.7 Conclusion and Future Work . 24

3 Motion Capture of Rope 25

3.1 Introduction . 26

3.2 Related Work . 28

3.3 Motion Capture Data . 29

3.4 Reconstructing Rope Motion . 31

3.4.1 Clustering Positions into Traces . 32

3.4.2 Swaps . 35

3.4.3 Gaps . 37

3.4.4 Add Unused Data . 40

3.4.5 Separate Rope Markers from Actor Markers 40

3.5 Results . 42

3.6 Conclusion and Discussion . 44

4 3D Tree Modeling Using Motion Capture 47

4.1 Introduction . 48

4.2 Related Work . 50

4.2.1 Tree Modeling . 50

4.2.2 Applied Motion Capture . 51

4.3 Motion Capture of Trees . 52

4.4 Data Processing . 54

4.5 Generating 3D Tree Shape . 55

4.6 Adding Leaves . 60

4.7 Results . 61

4.8 Discussion and Future Work . 66

5 A Realistic 3D Tree Model Based on L-Systems 68

5.1 Introduction . 69

vi

www.manaraa.com

5.2 Related Work . 70

5.2.1 L-systems . 71

5.2.2 Image Reconstructions . 71

5.2.3 Other Methods . 72

5.3 Tree Modeling Using L-systems . 72

5.3.1 Branch Library on L-systems . 73

5.3.2 Hemisphere for Probabilities Distribution 74

5.3.3 Bounding Box for Local Growth Control 76

5.3.4 Growth Level Controls . 76

5.3.5 Tree Generation Steps . 78

5.3.6 Examples of 3D Tree Modeling . 79

5.4 Results . 80

5.4.1 Growth Probability Control by Hemisphere 80

5.4.2 Growth Level Controls . 81

5.4.3 Growth Control over Small Components 81

5.4.4 Growth Control for Leaves . 82

5.4.5 Growth Control by Bounding Box . 83

5.4.6 Randomness . 84

5.5 Conclusions and Discussions . 85

5.6 Practical Application Plan . 86

5.6.1 Social Effects . 86

5.6.2 Political Effects . 87

5.6.3 Economic Effects . 87

6 Animating Trees Using Wind Fields Estimated from Motion Capture Data 89

6.1 Introduction . 90

6.2 Related Work . 92

6.3 Methods . 94

vii

www.manaraa.com

6.3.1 Motion Capture . 95

6.3.2 Tree Modeling . 95

6.3.3 Wind–tree Interaction . 97

6.4 Results . 105

6.5 Discussion and Future Work . 107

7 Discussion and Conclusion 110

References 113

viii

www.manaraa.com

List of Figures

2.1 Motion capture set up for a natural tree. 15

2.2 Steps in building a tree skeleton. 16

2.3 Reconstructed tree topologies. 19

2.4 Predicted versus actual displacement. 23

3.1 Motion capture setup and notation for describing captured data. 29

3.2 Process for converting unindexed marker positions into motion paths. 32

3.3 Clustering process for the second round. 34

3.4 An input point cloud and clustering result. 36

3.5 Estimate the position of marker. 38

3.6 Rope marker selection. 41

3.7 Screenshots of original and reconstructed rope and human actor. 43

3.8 Analysis of gap filling algorithm. 44

3.9 Screenshots of reconstructed motion of ropes and ribbon. 45

4.1 Maple model. 48

4.2 Various tree shapes generated from the same set of motion capture data. . . 48

4.3 Marker placement on the crown periphery. 54

4.4 A simple trunk model is added to the collection of branch tip positions. . . . 56

4.5 New particles are added within a vertical stack of bounding boxes. 57

4.6 A convex hull for all the particles. 57

4.7 A simple particle flow results in crown branching structure. 58

4.8 Definition of three forces. 59

ix

www.manaraa.com

4.9 Clustering that removes noise that leads to spurious marker positions. 61

4.10 Remove spurious motion. 62

4.11 Bounding volumes affect tree shape. 63

4.12 Pine tree model. 64

4.13 Shape-format force. 65

4.14 Tree shapes with different weight factors for gravity. 65

4.15 Tree shapes with different weighting factors for wind force. 66

4.16 Various tree shapes. 67

5.1 Tree structure under L-systems. 74

5.2 Side view of a 3D tree model and hemisphere. 74

5.3 An example of probability distribution of hemisphere. 75

5.4 Various growth levels. 77

5.5 A tree model with three growth levels. 77

5.6 A result for photokinesis simulation. 79

5.7 Branch directions. 81

5.8 3D tree models. 82

5.9 Particles with tree shape. 83

5.10 Simulate tree growth. 84

5.11 3D tree model compared to L-system. 84

5.12 3D tree model compared to DLA. 85

6.1 Estimate wind flow and create tree motion. 90

6.2 A particle with its nearest trunk point and its crown root point. 96

6.3 Vector field of wind velocities with estimated and interpolated values. Wind

velocity estimates based on recorded tree motion are shown in red with

interpolated velocities in blue. 98

6.4 Turbulence simulation to create branch motion. 102

x

www.manaraa.com

6.5 Energy flow in a wind velocity field. 103

6.6 3D branching structure with marker locations. 106

6.7 Branch motion paths with and without subgrid turbulence. 106

6.8 Motion paths for the animated tree. 107

6.9 Maple animation. 108

6.10 Multiple trees swaying. 108

xi

www.manaraa.com

Chapter 1

Background, Motivation, and Overview

Simulating non-rigid bodies with data from motion capture is a new application of

motion capture. We present a motion reconstruction approach for non-rigid bodies in the

context of motion capture. Passive optical motion capture records movements of non-rigid

bodies by tracking locations of retroreflective sensors placed on subjects. By processing the

recorded motion data and combining the data with physical and statistical models, we create

complete animation of non-rigid bodies. We focus on animating natural trees and ropes as

instances of non-rigid bodies. Motion is captured in the presence of external forces, such as

wind and human interaction.

Rope is one of the simplest non-rigid bodies. Animating ropes is a simple platform

from which to evaluate the motion capture process, including data collection and processing.

The capture process then can be generalized and applied to other non-rigid subjects, such as

natural trees. We present methods that can be used to create natural tree motion in wind

using physical and statistical models. The resulting motion is visually plausible and scalable.

Animating non-rigid bodies has important applications in computer-generated movies,

video games, and forestry engineering. In movie and video games where computational

resources are a concern, directors need a simple process to use the motion of non-rigid bodies

as part of telling a story. Motion capture hardware has been popular in movie and game

production for many years. Motion capture equipment is easy to set up and provides motion

data with good accuracy in both time and space. The hardware integrates camera calibration

algorithms and greatly simplifies the process of recording position information in real-world

1

www.manaraa.com

3D space. Many movies use motion capture to record motion from real characters and then

drive virtual characters with the collected motion data [12]. Motion capture produces realistic

motion data while reducing the cost for creating motion in different environments or in

fictional environments.

The equipment has flexibility for capturing both rigid bodies and non-rigid bodies.

However, most research and applications focus on rigid bodies. As a non-rigid body, a tree

has motion that is important in film and games because trees swaying in the wind can set

the mood or feel for a scene, so directors can use tree motion as a tool for telling stories. In

the field of forestry, our research helps forestry engineers understand the influence of wind on

trees. This can inform decisions for pruning trees or protecting structures. Rope, the other

application explored in this work, has simple structure and dynamics. But when the motion

of a human character interacting with the rope is captured in the same scene, the replay of

both rope and human motion becomes difficult. Movie makers may be able to use our motion

capture process and create animation with interactions between rigid and non-rigid bodies.

Human motion capture using a rigid body model, such as [25, 44, 62, 68], is a well-

studied area in motion capture but is less applicable to our research, as removing the rigid

body assumption changes the problem. There are two common approaches to extracting

human motion from motion capture data. One is to extract a skeleton model or kinematic

model from motion data [25, 44]. The other is to predefine the skeleton and to apply motion

capture-data to animate the predefined skeleton [62, 68]. Most of the methods have an

important assumption that the distance between any pair of markers is non-changeable.

However, this assumption does not stand for non-rigid bodies, which is the essential difference

for motion capture of rigid bodies and non-rigid bodies. Instead of a skeleton of rigid parts,

non-rigid motion capture focuses on reconstructing a mesh that deforms to match a moving

surface such as a face or cloth. We investigate non-rigid motion capture but we focus on

curved splines rather than curved surfaces.

2

www.manaraa.com

Motion capture of non-rigid bodies is difficult. Prior work on non-rigid motion capture

is mainly focused on facial motion [24, 54] and cloth motion [4, 27, 40, 63]. Both facial

motion and cloth motion aim to represent the motion of a surface. Motion capture of thin,

rod-shaped non-rigid bodies such as rope or tree branches is a fundamentally different problem.

For instance, rope, as a non-rigid body, is more naturally represented as a curved spline

rather than as a curved plane (though a curved spline can be used to drive the motion of a

plane). Worring’s [64] prior work in reconstruction of a line-shaped object in 3D from several

computer images builds non-rigid rope motion but would require a foreground– background

separation step and a sharp image of the rope in each frame.

Part of animating trees in wind is modeling the 3D shape of the tree to be animated.

Tree shape modeling has long been studied on computer graphics. A tree with natural

appearance greatly improves visual quality of tree animation. These methods include particle

systems [29, 34, 46, 50], L-systems [20, 21, 43], parametric models [60], photographs [29, 45, 58]

or videos [8, 19]. Most of these methods result in satisfying tree shapes but do not leverage

the 3D positions of motion capture markers, which are recorded as part of a motion capture

session but require a different set of inputs. Image- or video-based approaches convert a

set of 2D input images into 3D tree models by filling in the missing dimension. Motion

capture systems can record tree shape in 3D with high precision (using similar techniques for

converting a set of 2D images to a 3D model). Prior work [23] in reconstructing tree shape

from motion capture data using either exact measurements or markers placed within the

crown does not scale and does not apply when leaves occlude the branching structure.

Animation of trees in wind has been discussed for many years [1, 52, 56]. Prior work

in animating 3D tree models focuses on recreating branch motion due to wind turbulence.

Wind turbulence has been simulated and has been synthesized from the frequency spectrum

of turbulence created by tree crowns. Simulation-based models create tree motion based on

the tree’s biomechanical characteristics and wind dynamics [1, 11]. Spectral approximation

describes tree swaying and wind velocity field using some computer-generated noise. These

3

www.manaraa.com

systems include techniques based on photographs [65] or videos [8], and some parameter-based

spectral models [11, 52]. In most of the previous research, the wind field is created using noise

and fluid simulation. While simulation models capture visually important wind–tree effects,

such as crown sheltering, they require expensive computations that are not currently feasible

in interactive applications such as games. Spectral approximation ignores sheltering effects

and requires significant user intervention, but is computationally efficient. Rather than being

based on actual captured tree motion, simulation models and spectral approximations are

both theoretically based. Motion capture avoids the directability and computation problems

of simulated wind fields but may yield data that validates simulation-based models.

Our work differs from the previous work by introducing motion capture in simulating

non-rigid bodies. It is also the first work to motion capture bendy thin rods and the first to

replay motion capture data from a tree. The resulted animations are mostly driven by data

instead of pure physical simulation or stochastic process. We describe a complete approach

to animating natural trees using motion capture, including data collection, data processing,

generating tree shape, and combining statistics and wind dynamics for the animation. The

thesis discusses two approaches for tree animation with different motion capture setups, which

require different processes and create tree motion with varying scalability. Rope motion is

created using a data-driven approach rather than the pure physical model that is common

in previous research. The rope project helps us to better understand the motion-recording

capability of motion capture for non-rigid bodies. Using motion capture simplifies the process

to parameterize a physical model of a rope under specific motion.

1.1 Thesis Statement

A small portion of known movements collected from motion capture can produce complete

movements of non-rigid bodies by combining the motion capture data with physical and

statistical models. We show that the resulting motion is visually plausible for trees and rope.

4

www.manaraa.com

1.2 Publications

This dissertation consists of seven papers, two of which are under review. The work can be

divided into three parts: rope motion reconstruction, tree shape reconstruction, and tree

motion reconstruction. The remaining chapters contain these papers. Chapter 2 is a pilot

project in which a simplified motion capture process is presented with statistical analysis

for replaying natural tree motion where the motion is not scalable. There is no attempt to

retarget or extend the captured data. While we were able to replay the tree motion, it requires

a series of careful measurements to recreate the exact tree shape, and the motion cannot

be transferred to similar shapes or situations. Chapter 3 describes replaying rope motion.

The project focuses on processing motion capture data and uses rope’s simple structure to

validate estimated data against the collected motion data. The process for motion capture

data includes identifying and removing noises and labeling markers. This process was used

for both tree and rope motion capture. Chapters 4 and 5 begin a different approach to the

problem. Rather than directly replay the original motion on the original structure, in Chapter

4 and 5 we reconstruct the approximate tree shape from the captured motion in preparation

for replaying similar motion on a similar structure. Chapter 6 extracts a force field from

captured motion that can be used to animate any tree shape.

In Chapter 2, the pilot project aims to replay natural tree swaying in wind. Retrore-

flective markers are placed on a small cherry tree. We infer a skeleton from tree motion

data and repair the motion data using a rigid body model. The motion data contain gaps

and errors for branches that bend. Motion-data repair is critical because trees are not real

rigid bodies. These ideas allow the reconstruction of tree motion, including global effects,

but without a complex physical model. Instead, it employs a statistical model. This project

builds a complete pipeline for motion capture, including equipment set up, data collecting

interface, 3D tree model, and motion integration. However, the scalability of this approach

is limited and it requires intensive labor to reproduce the exact tree structure. The work

requires markers being placed about 10 cm apart on each branch segment. Leaves have to

5

www.manaraa.com

be removed to enlarge the visibility of markers to motion capture cameras. Branches are

assumed to be rigid (to some degree) with small bending capability.

Chapter 3 begins a study of motion capture for rope and takes a closer look at

animating non-rigid bodies using a non-rigid model for motion capture. Rope has a simple

structure with no branches and simple geometry. The model is a good test bed for evaluating

different algorithms for both data processing and motion replaying. In this project, we

provide a more general approach for processing motion capture data from passive optical

motion capture for non-rigid bodies rather than adapting a rigid body model as in Chapter

2. The data collection and processing process includes labeling markers and identifying and

removing noise. We provide clustering, gap repair, and marker swap detection algorithms

based on linear interpolation and forward differencing under the assumption that the rope

does not stretch. Indexed marker positions are connected with a spline in each frame to

approximate the original rope. The model produces visually plausible animations of rope

motion from data collected for a person interacting with rope. However, the method fails

when the rope experiences large accelerations that result in motion that is not modeled by

forward differencing.

Reconstruction of tree shape, as in Chapters 4 and 5, is an important step in replaying

motion capture of trees under external forces, which is the goal of the work presented in

Chapter 6. A realistic 3D tree model helps researchers estimate and compare computer-

generated animation against the original motion. Existing algorithms for generating branching

structures for image synthesis in computer graphics are not adapted to the unique data set

provided by motion capture. In Chapter 4, we discuss a method for tree shape reconstruction

using particle flow on input data obtained from a passive optical motion capture system.

Initial branch tip positions are estimated from averaged and smoothed motion capture data.

Branch tips, as particles, are also generated within the bounding space defined by a stack

of bounding boxes or a convex hull. The particle flow, starting at branch tips within the

bounding volume under forces, creates tree branches. The resulting shapes are realistic and

6

www.manaraa.com

similar to the original tree crown shape. Several tunable parameters provide control flexibility

over branching shape and arrangement.

In Chapter 5, we combine a procedural method with particle flow to generate a 3D

tree shape. Using L-systems for describing tree branches as particles, our method introduces

a hemisphere to generate particles, uses a growth level to simulate different ages of branches,

and applies a dynamic bounding box to detect local growth area in a tree. This new method

enhances the management of tree shapes by easing the control over distributions of branches

and leaves. We also demonstrate that the method has potential to simulate phototropism and

growth around physical barriers. We evaluate this model by particle flow and the complexity

of this method, showing performance competitive with existing methods.

Chapter 6 discusses non-rigid motion capture by extracting external forces from motion

capture data and then replaying those forces to create animation. We explore this idea in the

context of motion capture of natural trees in wind. Motion of a tree in wind is decomposed

into three forces: wind-induced drag, branch elasticity, and damping by the leaves. Given a

model of elasticity and damping, the drag force can be isolated and used to estimate wind

velocity. The extracted velocity field is extended to a larger volume and enriched with a

turbulence model. That wind field can be replayed on a tree model that includes elastic

and damping properties to create similar motion. The work contained in this chapter is the

culminating work of this dissertation.

We list all the citations for each chapter in the order in which they appear.

1. Jie Long, Cory Reimschussel, Ontario Britton, Anthony Hall, and Michael Jones.

Performance Capture for Natural Tree Motions in the Wind. Motion in Games , MIG, 2010.

2. Jie Long, Bryce Porter, Michael Jones. Motion Capture of Rope, not yet published.

3. Jie Long and Michael Jones. 3D Tree Modeling using Motion Capture. IEEE The

Fourth International Symposium on Plant Growth Modeling, Simulation, Visualization and

Application (PMA ’12).

7

www.manaraa.com

An extended version of this paper is requested for submission to the journal Frontiers

in Computer Science .

4. Jie Long and Michael Jones. A Realistic 3D Tree Model based on L-Systems.

Report for UNEP Eco-Peace Leadership Center (EPLC), 2008.

5. Jie Long and Michael Jones. Estimating wind flow from tree motion using motion

capture data, not yet published.

In addition, the research on motion capture of trees was presented as a short talk in

SIGGRAPH 2009, where a short abstract was published.

Jie Long, Cory Reimschussel, Ontario Britton, and Michael Jones. Motion capture

for natural tree animation. International Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH 2009: Talks. New Orleans, Louisiana, Article No. 77, 2009.

Data captured as part of this work was used in a study of tortuosity as a metric for

evaluating branch motion paths. The citation for that paper is given below but the paper is

not included in the dissertation.

Michael Jones and Jie Long. Tortuosity as a Metric for Evaluating Branch Motion

Paths. IEEE The Fourth International Symposium on Plant Growth Modeling, Simulation,

Visualization and Application (PMA ’12).

8

www.manaraa.com

Chapter 2

Motion Capture for a Natural Tree in the Wind

Jie Long, Cory Reimschussel, Ontario Britton, and Michael Jones. Motion capture for natural

tree animation. International Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2009: Talks. New Orleans, Louisiana, Article No. 77, 2009.

Abstract

Simulating the motion of a tree in the wind is a difficult problem because of the complexity

of the tree’s geometry and its associated wind dynamics. Physically based animation of trees

in the wind is computationally expensive, while noise-based approaches ignore important

global effects, such as sheltering. Motion capture may help solve these problems. In this

paper, we present new approaches to inferring a skeleton from tree motion data and repairing

motion data using a rigid body model. While the rigid body model can be used to extract

data, the data contains many gaps and errors for branches that bend. Motion data repair

is critical because trees are not rigid bodies. These ideas allow the reconstruction of tree

motion, including global effects, but without a complex physical model.

9

www.manaraa.com

2.1 Introduction

We address the problem of animating natural trees in games with greater accuracy but

without additional computational overhead compared to techniques based on velocity or force

textures—such as [11]. We believe that motion capture is one way to accomplish this goal.

Motion capture of tree motion in the wind is difficult because the tree branching structure is

both important and difficult to model and because branches are non-rigid bodies at large

deflections.

Accurate animation of trees is important to both CG animators and forestry ecologists.

CG animators can use plausible and directable models of tree motion in digital storytelling.

In a game, trees moving in the wind can be used to emphasize weather or create a sense of

foreboding. Forestry ecologists can use models of tree motion to design pruning methodologies

that maximize yield while minimizing windthrow potential.

Many approaches have been taken to modeling tree structure and geometry. Recent

photo-based approaches to tree modeling [29, 45, 58] are particularly relevant to this work.

Photo-based methods plausibly recreate 3D natural tree models by approximating the

branching structure of photographed trees. However, these models are created without

considering tree motion. This means that the branching structure may not match the motion

of the tree.

Prior work in animating 3D tree models focuses on recreating branch motion due to

wind turbulence. Wind turbulence has been simulated and has been synthesized from the

frequency spectrum of turbulence created by tree crowns. Simulation-based models create tree

motion based on the tree’s biomechanical characteristics and wind dynamics [1, 11]. Spectral

approximation describes tree swaying and wind velocity field using some computer-generated

noise. These systems include techniques based on photographs [65] or videos [8] and some

parameter-based spectral models [11, 52].

Each approach is insufficient. While simulation models capture visually important

wind–tree effects, such as crown sheltering, they require expensive computations that are not

10

www.manaraa.com

currently feasible in interactive applications such as games. Spectral approximation ignores

sheltering effects and requires significant user intervention but is computationally efficient.

Rather than being based on actual captured tree motion, simulation models and spectral

approximations are both theoretically based.

In this paper, we present novel approaches to tree structure estimation from motion

capture data and tree motion repair using interpolation. We approximate the tree structure

using a minimal spanning tree over position and movement data collected during motion

capture. We detect and repair the collected data using interpolation techniques based on

curve fitting and machine learning. The resulting tree model and animations are realistic

recreations of a tree moving in the wind and include sheltering effects while supporting fast

playback. We avoid modeling wind fields explicitly because their end effect is measured

directly in the motion of the leaves and branches. Since this represents only the initial stages

of applying motion capture to the problem of tree animation, we focus simply on the motion

of one specific tree subject. We leave for future work questions such as how the results might

scale to other trees or subject models. The animations resulting from this work can be seen

in the video that accompanies this paper.

2.2 Related Work

In this section we discuss closely related work in tree modeling, tree animation, and motion

capture.

2.2.1 Static Tree Modeling

Static tree models describe tree shapes including topology, texture, and geometry for the

trunk, branches, and leaves. Tree models for motion capture data need to capture the

branching structure of a specific tree such that the captured motion looks plausible when

animating the model. This is a unique challenge in tree modeling that has not been addressed

by prior work.

11

www.manaraa.com

Position-aware L-systems [43] have been used with some success to create models of

specific plants, but these results are difficult to reproduce. The processes of controlling the

branching structure using the silhouette and setting the rule parameters is difficult.

Photo-based approaches [29, 45, 58] can produce plausible tree shapes that match a

given tree but estimate the internal branching structure using methods such as particle flow

[29]. Estimates of the internal branching structure are not sensitive to the motion of the

original tree. We use similar methods based on photographs to create a bounding volume for

the tree shape. In addition to images, we also use motion capture data to recreate a plausible

internal branching structure in which points contained in one branch have similar movement.

Diener et al. approximate shrub structure based on single-camera video data of a

shrub in the wind [8]. Diener uses a clustering method to identify clumps of the shrub with

similar motion and then builds a skeleton that corresponds to the clustering. Our approach

is similar, but we skip the clustering step and build a skeleton directly from the marker

positions and motion data in 3D rather than 2D video data.

2.2.2 Animation of Trees

Prior work in tree animations relies primarily on simulation-based methods and spectral

approximations. Both approaches produce plausible tree movements in the wind while

ignoring some effects to remain tractable. Most of these methods simplify the complex

dynamics of leaf–wind interaction, which is the primary cause of branch motion. One study

[49] found that much of the motion of a branch could be accounted for by the presence

or absence of leaves. Motion capture obviates the dynamic model but introduces several

additional problems.

Simulation-based methods use computational fluid dynamics to simulate the effect of

wind on trees. Akagi and Kitajima [1] do allow trees to influence the wind using a two-way

coupled model based on the Navier-Stokes equations, with an additional term for external

forces. The simulation is based on a stable approach [56] to the marker and cell method.

12

www.manaraa.com

Akagi and Kitajima use virtual resistive bodies to account for tree structures smaller than

the grid resolution and add adaptive resolution and a boundary conditions map to improve

performance by allocating grid resolution only where needed. Simulation-based methods are

currently too computationally expensive for use in games.

Spectral approximations of trees in wind use approximations to the recorded spectra

of wind passing through trees to generate motion. This method was first used by Shinya and

Fournier [52] and later by Chuang [6], Habel [11], and Zhang [67]. Other work also relies

on approximations in the frequency domain but uses different techniques to approximate

turbulence [30, 32, 56]. Spectral methods have also been combined with physical simulation

[33, 67]. Spectral approximations result in plausible motion and are efficient enough for

games but ignore the bidirectional wind–tree interactions, such as sheltering effects. These

effects are important for visual realism and are captured using motion capture. Our objective

is to create animation data which can be used as efficiently as textures but which are more

accurate.

More recent work [9, 11] animates tree motion in a computationally economical way.

Diener [9] simplifies the wind model using a pre-computed wind projection basis taken from

vibration modes rather than a harmonic oscillator model. As with Habel [11], the wind is

assumed to be spatially uniform for a single tree. At run time, the wind load is estimated

for all nodes on a tree relative to the wind projection basis, and this can be combined with

a level-of-detail model to render a forest of thousands of trees in real time. Each of these

methods ignores the effect in return of trees on the wind and therefore omits all forms of

sheltering. Another less significant problem is that the turbulence used in these models

matches actual turbulence only in the frequency domain and not necessarily in the time

domain. While many turbulence patterns share frequency spectrums with those created by

tree crowns, only one pattern matches the spatial properties of the actual turbulence created

by a specific tree in a specific wind. Our work captures the motion of a tree as it moves in

the turbulence created by that tree.

13

www.manaraa.com

Our work is similar to video-based approaches in that we capture and analyze tree

motion. Unlike video- [8] or image-based [65] approaches, we obtain a motion path for a

cloud of points in 3D rather than applying 2D motion to 3D skeletons. Our methods may

also yield new insights into how to use video data in the animation of trees.

2.2.3 Motion Capture

Motion capture for trees is more difficult than performance capture of human subjects because

trees are both rigid and non-rigid (depending on the applied force, among other factors) and

have more complex and less predictable topologies.

Motion capture systems have been widely used for human or animal performance

capture [48, 68]. We use a method similar to Kirk [16] to automatically generate rigid

skeletons from optical motion capture data. Since tree branches are both rigid and non-rigid,

the data do not contain a constant distance between markers. We use a rigid body algorithm

to solve the marker indexing problem. Because some of the data is collected from non-rigid

motion, this introduces additional noise and gaps in the data. A central contribution of this

paper is a way to repair this data for tree motion. Another approach to this problem would

be to investigate marker indexing algorithms for non-rigid bodies. Doing so may reduce the

amount of noise and gaps in the motion data.

2.3 Motion Capture

We use an optical motion capture system to collect position and motion data from which we

reconstruct tree structure and movement. For this paper, the system consists of 12 OptiTrack

FLEX:V100 cameras arranged in a circle in a 4 m X 4 m room indoors. A cherry tree sapling

with a height of 2 m was used as the test subject. The tree was placed in the center of these

cameras and a fan was used to create wind at different speeds near the tree. The system has

not been deployed for trees larger than 3 m and we believe it would be impractical for large

14

www.manaraa.com

Figure 2.1: Motion capture setup for a natural tree using an optical motion capture system.

trees. We believe it would be more practical to explore methods for extrapolating small tree

motion to create large tree motion than it would be to capture large tree motion.

Reflective markers are placed on each branch and some leaves. The arrangement of

markers on a single branch segment depends on the flexibility of the branch. If the branch is

thin and flexible, the distance between markers is about 8 cm; for a rigid branch, such as the

trunk, the distance between markers is about 15 cm. Placing markers more closely together

allows us to approximate a flexible branch as a series of rigid linkages. This results in cleaner

motion data with fewer gaps because the motion capture system depends upon a user-defined

set of fixed-length rigid links in order to track and label the markers as they move. The

benefits of this approach are especially evident under higher wind speeds, when branches

begin to flex and bow. This placement strategy assumes that the tree crown is sparse. Trees

with dense crowns will require a different strategy.

We placed approximately 100 markers on the tree to collect branch motion. The 3D

positions of all reflective markers are recorded at 100 frames/sec. Leaf motion is recorded

separately using three markers on each leaf in a smaller representative sample. Figure 2.1

shows the arrangement of markers for both branches and leaves motion capture.

15

www.manaraa.com

Figure 2.2: Steps in building a tree skeleton.

2.4 Build Static Tree Geometries

One significant problem with motion capture of trees, compared to human performance

capture, is that the branching structure, or topology, of a tree is less predictable and more

complex than that of a human. A minimal spanning tree algorithm is used with a cost

function derived from motion data to create a plausible branching structure. The branching

structure is plausible when animating it with the captured motion looks plausible. The cost

function is one of the contributions of this paper.

2.4.1 Skeleton and Topology Estimation

Figure 2.2 summarizes the process of estimating the skeleton and topology. This process

has three steps. First, hierarchical clustering eliminates replicated recorded markers in each

frame. Next, we use position and motion data for each marker to define a cost function.

The cost function is used to estimate the plausibility of merging two different markers. A

minimum spanning tree algorithm uses a different cost function to connect the markers into a

16

www.manaraa.com

tree-like skeleton that will have plausible motion when animated using the captured motion

data.

The first step, shown on the left side of Figure 2.2, is to eliminate duplicate, yet

slightly different, recorded positions of a single marker. We use Euclidian distance as the

clustering metric. The single linkage algorithm groups markers into a hierarchy of n clusters,

where n is the number of markers originally placed on the tree. Within each frame, a cluster

is reduced to a single representative marker. When all frames have the correct number of

markers, we further refine the representative position of each marker, either by choosing its

position in the tree’s rest pose or by averaging its position over time. The tree skeleton is

built from the n representative marker positions. This skeleton is used for the entire capture

sequence.

The second step, shown on the right side of Figure 2.2, computes costs for creating

connections in the control skeleton between different pairs of markers based on the recorded

position and motion data. Connection costs are computed for pairs of representative markers

with one marker from each cluster. The cost function consists of three elements: initial

position, average position over time, and variance of position over time. We assume that the

branch motion is periodic. The average position is similar to the position while the variance

reflects the amplitude of the movement. The initial positions are recorded when there is no

wind and the tree is stationary. The average positions are calculated as shown in the next

equation in which m is the number of recorded frames and pi is the 3D position for a marker

at the ith frame:

d̄ =
1

m
Σm
i=1pi.

The variance in position is similarly defined as

σ2 =
1

m
Σm
i=1(pi − d̄)2.

17

www.manaraa.com

Let α, β, and γ be constant weighting parameters; then the cost to connect markers

Ma and Mb is given by

ω = α||pMa − pMb
||+ β||d̄Ma − d̄Mb

||+ γ||σMa − σMb
||.

The cost to connect markers Ma and Mb is low when Ma and Mb are close in both

position and movement.

In the third step, we use Prim’s MST algorithm with the node at the bottom of the

trunk as a starting point to build the tree skeleton. Pairs of markers with similar position

information and movements have low connection cost and are connected in the skeleton. This

skeleton is directly taken as the input tree structure for rendering in the next step.

Figure 2.3 shows the importance of each part of the cost function. The right side of

Figure 2.3 shows a tree created using just the change in variance as the cost function. This

cost function results in branch tips connected to branch tips because variance increases as

one moves along a tree from trunk to branch tips. The middle tree was created using only

positional information. While the structure is accurate for much of the tree, several points

are connected incorrectly across the middle of the tree. This will result in implausible motion

when animated using the motion capture data. Using both metrics, along with average

position, results in a more accurate model shown on the right.

By combining these parameters, we connect markers with similar position and move-

ment. For a tree with 98 clusters of markers, 66.26% of the resulting connections are correct

when compared with the actual tree. Most errors are from connecting markers in the correct

branch segments but at the wrong junction points within the branch segment. This cost

function occasionally connects markers from different branches but which share close positions

and movements. In these cases, the motion of physically adjacent branch tips is similar and

the resulting animation is still plausible.

18

www.manaraa.com

Figure 2.3: Reconstructed tree topologies using variance, initial position, and a combination
of variance, initial position, and average position.

2.4.2 Geometry of Branches and Leaves

After the tree skeleton is created, the next step is to generate the geometric mesh. The

marker points in a single branch are used as control points to create a curve. A second curve

is placed at the first marker point in the branch and oriented to the first two points in the

branch. A closed circular shape is swept along the profile curve to create a NURBS surface.

The profile and shape curves are discarded, leaving just the branch geometry.

Then we bind the mesh to the skeleton. This step is separated from the previous steps

so that the artist has more flexibility to modify the automatic mesh before it is bound to the

skeleton. After any needed updates, the mesh is bound to the geometry. Once the geometry

is bound, the artist again has the flexibility to manually tweak the binding.

Finally, a 3D point cloud inferred from photographs guides the manual placement

of leaves. The leaves are placed to fill the volume occupied by the original tree. The tree

volume is created using inverse volumetric rendering [45] applied to 37 photographs taken

from a known camera position. The resulting 3D point cloud is exported to a 3D modeling

package and, after manually matching the tree skeleton with this point cloud, we manually

place leaves on branches while remaining in the recorded crown volume.

19

www.manaraa.com

2.5 Build Tree Motion

In this section, we describe branch motion repair and leaf motion synthesis. Branch motion

repair is the process of identifying and eliminating errors, gaps, and noise from the motion

capture data. The resulting motion is used to animate the 3D tree model created in the prior

section.

We used the rigid body algorithm that was shipped as part of the NaturalPoint Arena

software to convert unindexed point clouds into an animated skeleton. Because tree branches

are non-rigid at large deflections, the resulting motion contains more gaps and errors than

one might expect to find for rigid body motion capture. We use linear interpolation, a filter,

and a machine learning algorithm to repair the resulting motion. The NaturalPoint Arena

software provides some interpolation processes to fix motion gaps, but requires the user to

manually identify gap regions and select a correction method. We automate gap detection

and correction with different methods, depending on the gap size. A machine learning based

method for addressing large gaps is one of the contributions of this paper. We use a standard

curve fitting technique for small gaps.

2.5.1 Filter-based Noise Detection and Removal

For some non-rigid motion, the rigid body motion capture system introduces anomalous

artifacts to the motion signal, resulting in sporadic popping motions of certain leaves and

twigs. These artifacts are detected using convolution-based filtering techniques and are

replaced by fitting Bezier curves over the corresponding sections of the motion signal.

2.5.2 Small Gaps in Data

Small gaps in data are short sequences of 100 frames or less in which no position data is

recorded for a marker. Small gaps occur when a marker becomes occluded or is otherwise

lost. Linear interpolation is used to repair small gaps because linear interpolation can be

done quickly and is good enough for these gaps.

20

www.manaraa.com

Linear interpolation predicts missing marker positions based on the positions of

neighbors. For a marker with missing position data, we find the two nearest neighbors with

available position data. Then we compute Euclidean distances among the positions of these

three markers and a velocity for each marker. Different distance metrics can be used. By

doing linear interpolation according to the positions and velocities, we estimate the position

for the missing marker.

Linear interpolation works well if all three markers have similar movement. However,

if the motions of two different, but adjacent, missing markers have their positions interpolated

from the same set of nearby neighbors, the resulting interpolated motion may not preserve

each marker’s unique periodic motion. This may happen even though we aim to make the

interpolated motion fit smoothly with the existing motion for each marker. However, losing

periodic movements for a short period of time when repairing a small gap still results in

visually plausible motion.

2.5.3 Large Gaps in Data

Repairing large gaps in data is done using a more sophisticated interpolation scheme so that

the synthesized motion has good periodic properties. Large gaps in data refer to gaps which

comprise more than 40% of the entire motion trace collected for a single marker. A machine

learning algorithm builds a function that is used to infer motion that is used to fill large gaps.

Given the connection between two adjacent markers, motion data for both markers

at low wind speed, and motion data for one marker at high speed, the machine learning

algorithm trains a support vector machine (SVM) and defines a correlation function. This

approach is based on the observation that good data is captured for all markers at low wind

speed, but large gaps appear in the data for some markers at high wind speed. The SVM

learns a correlation between data from two markers collected at low wind speeds. This

relationship is used to estimate missing motion at high wind speeds under the assumption

that the relationship is not sensitive to wind velocity.

21

www.manaraa.com

The tree skeleton structure is used to find the nearest topological neighbor with motion

data for both high and low speeds. In most cases, markers at branch tips have missing data

while markers at the branch base have the required data. This is because markers at the

branch base move more rigidly than markers on tips. In these cases, the marker at a tip has

large gaps in motion data and its nearest neighbor in the direction of the branch base often

lies on the same branch.

Sequential minimal optimization (SMO) [14, 38] trains an SVM, which defines the

correlation function between the two markers’ positions at low speed. In order to improve

the precision of the correlation function and to avoid phase differences, the motion data from

each series is sorted in ascending order of displacement. Let Ma be the nearest neighbor to

Mb, which is a marker with missing motion at high speed. Ma and Mb both have motion

data at low speed. A learned function F estimates the position of Mb given Ma. Position

data from Ma recorded at high wind speeds is given to F , which then estimates Mb’s position

at high wind speeds.

Figure 2.4 shows the estimated and actual position for one marker at low and high

wind speeds. The vertical axis is the displacement and the horizontal axis is the frame

number. In this figure, the motion of marker Ma at low wind speed, which is the topmost

trace on the left, is used with the recorded motion of marker Mb, which is the lower trace on

the left, to learn a function that predicts the position of Mb given the position of Ma. For

comparison, we placed the predicted position of Mb on the graph as well. The predicted

position of Mb closely matches the actual position at low wind speeds. At high wind speeds,

shown on the right, we held back the recorded position of Mb and predicted the position

of Mb in each frame given only the position of Ma. The predicted position of Mb at high

speeds closely matches the actual position of Mb but tends to overestimate the amount of

displacement in Mb.

22

www.manaraa.com

Figure 2.4: Predicted versus actual displacement for a marker at low and high wind speeds.

2.5.4 Leaf Motions

Motion data applied to leaves is based on motion captured from only a few leaves. This

motion is scaled and offset to simulate a greater variety and randomness of leaf motion. The

leaf geometry deforms along motion curves applied at the end, at the middle, and near the

stem.

The complexity of leaves moving in the wind precludes any attempt to correlate leaf

movement with the movement of the branch it is on. Leaves can be quite turbulent or almost

still on a branch that is either very still or sweeping any position through its arcs of movement.

However, motion of the leaves is scaled with the branch motion to suggest that they are

driven by the same wind. These two motion sets can also be decoupled for an artist to achieve

a particular effect.

2.6 Results

The final animation is shown in the video that accompanies this paper. In that video, most

motion capture artifacts have been removed and the motion looks reasonable. Results in

skeleton estimation and motion repair, which are the main contributions of this paper, were

given in the preceding sections.

23

www.manaraa.com

2.7 Conclusion and Future Work

A plausible tree skeleton can be reconstructed using a minimal spanning tree algorithm over

a cost function defined using position and motion data. The skeleton is plausible in the

sense that replaying the capture motion on the skeleton looks realistic. Gaps and errors

in motion capture data for trees can be replaced with data interpolated from neighboring

branch motion. These are important steps toward realizing motion capture of trees for tree

animation in games. Motion capture of tree motion is a good match for motion in games

because the resulting motion is realistic but requires only replaying, rather than simulating,

actual motion.

We had hoped to get better results with the repaired data and the rigid body algorithm

we used. Based on these results, we believe that investigating other approaches to processing

the point cloud are more promising than repairing the errors caused by using the rigid body

algorithm we used.

Future work could take several interesting directions. One of these is to avoid defining

rigid bodies for each branch while capturing motion by defining the tree as a non-rigid body,

which is a truer representation of its natural form. More work needs to be done to be sure the

algorithm scales well for capturing the motion of other tree subjects as well as for transferring

captured motion from one tree to another. By capturing data from multiple trees at once,

the interactions among them could be studied and applied to simulate groups of trees or even

forests.

24

www.manaraa.com

Chapter 3

Motion Capture of Rope

Jie Long, Bryce Porter, Michael Jones. Motion Capture of Rope.

Abstract

We reconstruct rope motion from passive optical motion capture data using a statistical

model without a dynamic model of rope behavior. Progress in motion capture for faces and

cloth has limited applicability to the motion capture of rope because rope is a curved spline

rather than a curved surface. We present clustering, gap repair, and marker swap detection

algorithms based on linear interpolation and forward differencing under the assumption that

the rope does not stretch. Indexed marker positions are connected with a spline in each

frame to approximate the original rope. The model produces visually plausible animations of

rope motion from data collected for a person interacting with rope. The method fails when

the rope experiences large accelerations that result in motion that is not modeled by forward

differencing.

25

www.manaraa.com

3.1 Introduction

Motion capture for rope is a challenging problem because rope is a non-rigid body. The

problem is more difficult when the motion of a human character interacting with the rope is

also captured in the same scene because, before markers are indexed from frame to frame, it is

difficult to separate markers on the actor from markers on the rope. We present a statistical

motion estimation scheme with a clustering model to achieve motion capture of rope from

passive optical motion capture data. Our solution consists of novel approaches to clustering

and the repair of gaps and swaps, as well as segmenting rope motion from human character

motion.

Motion capture of human characters interacting with rope may have applications

in the production of computer-generated movies and video games. Using motion capture

data simplifies recording the interaction between characters and ropes while preserving the

subtleties of that interaction. Capturing interactions between rope and characters may be

particularly compelling when motion capture is already being used to record character motion.

In this paper, we focus on separating rope motion from actor motion and then reconstructing

the motion of the rope. A variety of existing methods can be used to reconstruct actor motion

from motion capture data. The approach allows reconstructing the interactions between

characters and thin, non-rigid bodies.

Prior work on non-rigid motion capture is mainly focused on facial motion ([24, 54])

and cloth motion ([4, 27, 40, 63]). Both facial motion and cloth motion aim to build a mesh

system for representing the motion of a surface. Motion capture of rope is a fundamentally

different problem because rope is more naturally represented as a curved spline rather than

as a curved plane (though a curved spline can be used to drive the motion of a plane).

Human motion capture using a rigid body model (such as [25, 44, 62, 68]) is a well-

studied area in motion capture but is less applicable to our research as removing the rigid

body assumption changes the problem. Worring’s [64] prior work in reconstruction of a

line-shaped object in 3D from several computer images solves essentially the same problem

26

www.manaraa.com

but would require a foreground–background separation step and a sharp image of the rope in

each frame.

Our solution reconstructs free motion of rope and ribbon from recorded motion capture

data. The captured data consists of an unindexed point cloud of purported marker positions.

A marker segmentation algorithm is used to first separate the rope markers from the character

so that the two motion streams can be reconstructed individually. A specialized clustering

method processes the captured rope motion data and creates motion traces for markers in

3D space. Each cluster represents the motion from a single reflective marker. The clustering

process also automatically detects and eliminates most noise. After creating these motion

traces, marker swaps are detected and repaired by assuming that the rope does not stretch.

Motion capture data marked as noise are revisited and used to fill gaps in marker traces if the

data fits existing motion traces without extending the rope length. Small gaps are filled using

linear interpolation and big gaps are filled using a structure-based midpoint displacement

algorithm. Human character motion can be reconstructed using any of a variety of algorithms

for reconstructing human motion from optical motion capture data. The resulting motion

streams containing rope and human motion, respectively, are recombined to recreate the

original motion in 3D.

Our contributions are the following:

(1) A marker segmentation algorithm that separates rope markers from the character

markers.

(2) A clustering algorithm to aggregate a point cloud into motion traces for non-rigid

ropes and ribbons.

(3) Forward differencing to estimate marker locations using previously labeled locations.

(4) A recursive midpoint displacement algorithm for fixing gaps.

These contributions allow us to recreate the interactions of a character with a rope or

ribbon from passive optical motion capture data. Side-by-side playback of the resulting 3D

27

www.manaraa.com

motion and video of the original motion show that the captured motion closely matches the

original motion.

3.2 Related Work

The process of reconstructing motion from motion capture data includes data collection,

data processing, and model mapping. Commercially available motion capture packages

provide tools for creating the motion of a few objects, including human bodies and faces.

Current research mainly aims to optimize the usage of collected motion data and to improve

the quality of the resulting motion. However, fundamental issues in the motion capture of

non-rigid bodies require additional investigation.

There are two common approaches to extracting human motion from motion capture

data. One is to extract a skeleton model or kinematic model from motion data [25, 44]. The

other is to predefine the skeleton and to apply motion capture data to animate the predefined

skeleton [62, 68]. Wen [62] uses a least-square optimizing method to match motion capture

data to a human skeleton. Zordan [68] maps motion capture data to a predefined skeleton

using a force-based physical model. In our research, the structure of the rope model is a

simple non-branching curve, so we predefine the rope shape and apply our algorithm to

automatically map motion data onto the predefined structure.

Liu and colleagues [22] take a data-driven approach to completing human motion from

a limited set of markers. A similar approach to rope motion reconstruction would require

recording and analyzing many different rope motions, which could then be fit to partial data.

Instead of a skeleton of rigid parts, non-rigid motion capture focuses on reconstructing

a mesh that deforms to match a moving surface such as a face or cloth. We also investigate

non-rigid motion capture, but we focus on curved splines rather than curved surfaces.

Motion capture for the human face is a well-studied problem. Approaches that use 3D

scans of face geometry [5, 35], a model of the underlying tissue [54], and displacement maps

[24, 26] have been investigated. These methods are not adequate for capture of rope motion

28

www.manaraa.com

Figure 3.1: Motion capture setup and notation for describing captured data.

because modeling deformed surface motion tracks a 2D surface rather than a 1D spline. In

practice a rope can undergo a wider range of motion, (such as coils, loops, and spins) than

a face, but markers on rope are visible from all angles, unlike markers on faces, which are

visible from only one side of the face.

Motion capture for cloth is also a well-studied problem. Prior work has been based

on analysis of video of cloth motion, including customized texture patterns [63], optical flow

[27], a stereo pair of images [40], and finding simulation parameters based on video [4]. As

with motion capture of the human face, we have posed the motion capture problem for rope

differently because rope has a different geometry and range of motions.

A finite element model can simulate rope motion [13], including effects such as tension,

shear, bending torsion, contact, and friction. Physical models for involve a parameter system

to describe mechanics and structure and can be computationally intensive.

3.3 Motion Capture Data

We use an optical motion capture system produced by NaturalPoint for recording data.1 This

section presents the notation used to describe motion capture data.

After the motion capture arena is set up, an actor stands in the center of the arena.

There must be enough space on all sides of the actor so that the rope can move freely and

still be in the view of the surrounding cameras. Before recording the motion capture session,

the actor assumes a T pose while the rope hangs vertically and separate from the actor. This

1The system consists of 12 OptiTrack Flex:V100R2 camera mounted on light poles arranged in a circle
with a radius of approximately 2.5 meters.

29

www.manaraa.com

allows the marker segmentation and rope reconstruction algorithms to be initialized properly.

After initialization, the actor can then interact with the rope.

A motion capture session is n frames of motion capture data:

C = [f 1, f 2..., fn],

where each frame f i(1 < i < n) consists of an unordered set of q provisional marker locations:

f i = [pi1, p
i
2..., p

i
q].

Each pij(1 < j < q) denotes the jth marker position at frame i. Figure 3.1 illustrates these

concepts. The left image shows a motion capture setup with a rope dangling from a pole in

the center of an arena. The next image shows a complete capture session, C, consisting of n

frames of data. Next, the marker positions recorded for a single frame f i are shown. Finally,

the light gray line connects positions in a trace, tj, of the position of a single marker across

frames.

In the following expressions, the superscript i of pij always denotes the frame number.

A provisional marker location pij is a triple denoting a 3D position in space. A marker

location mi
j is the location of a specific marker with index j in frame i. An initial trace, t̃j is

an incomplete estimate of the position of a single marker over time and is a list of marker

locations.

t̃j = [m1
j ,m

2
j ...,m

n
j]

A final trace, tj, is an initial trace after processing to repair gaps and undo marker

swap.

In a single trace, a gap is a sequence of frames for which no provisional marker locations

were assigned. Gaps are caused by either occluded markers or failure to assign a marker

30

www.manaraa.com

location to a trace. The position of marker j for which a position is not unknown in frame p

is denoted by mp
j = ⊥ as a gap.

Noise occurs when marker locations are created based on transient reflections in the

capture arena. Noise that creates motion outside our assumptions about rope motion is

automatically detected and eliminated during data processing.

3.4 Reconstructing Rope Motion

Rope motion can be reconstructed from unindexed marker positions using forward differencing

and a novel midpoint displacement algorithm without a physical model assuming that the

rope does not stretch. Our aim is to reconstruct rope motion from unindexed motion capture

data in the presence of noise and a human actor.

The main process is shown in Figure 3.2. Markers on the rope are first separated from

markers on the human actor so that markers tracking rigid bodies (such as the human actor’s

bones) can be processed separately from markers tracking non-rigid rope. The separation

process is described in Section 3.4.5; that section also shares ideas from the reconstructing

process. The unindexed points remaining after separating rope and actor motion are likely

to represent markers attached to rope and are labeled into separate traces using a nearest-

neighbor based clustering algorithm. All traces are assigned to a rope structure with a

predefined length. Marker swap and gaps in motion traces are detected and repaired using

statistical analysis along with the assumption that the rope does not stretch. Provisional

marker locations not included in a trace in the first pass are classified as noise but may not

be noise. After the first motion reconstruction pass, markers classified as noise are added to

existing traces if they match the rope structure and motion. A post-processing step checks

rope length and guides another round of processing if necessary. The process iterates until

gaps, noise and rope stretching fall below acceptable standards or the algorithm fails to

converge. In our research, some data, especially those with swaps and gaps, required two or

three rounds of processing, but most of the collected motion capture data required only one

31

www.manaraa.com

Figure 3.2: Process for converting unindexed marker positions into motion paths.

round of processing and the algorithm did not converge for data with noise and many large

accelerations of the rope.

After all motion capture data are matched into traces while noises and gaps are fixed,

a Catmull-Rom spline connects all marker positions and creates a smooth curve among these

positions on a rope.

3.4.1 Clustering Positions into Traces

For frame f i and initial trace t̃j we attempt to find a provisional position pix that is a good

match for t̃j in that frame. If no match is found, we set mi
j = ⊥.

mi
j =


pix if pix is a good match for trace t̃j in frame f i

⊥ otherwise

First, a small portion of the capture session with little or no movement is processed in

order to find the number and locations of markers. Next, a second round of clustering assigns

provisional marker positions across all frames to zero or one of the identified traces. Positions

not assigned to a trace are marked as noise and may be added to a trace later. Each round

of clustering is discussed in detail below.

32

www.manaraa.com

First Round of Clustering

The first round of clustering is performed on a stationary prefix session in which the markers

remain stationary for approximately one second. This is similar to capturing a T pose during

a motion capture session with a human actor.

Two parameters, γ and minPoints, are predefined. Parameter γ is a 3D vector of the

maximum allowable movement range for a marker during the stationary prefix. Parameter

minPoints is a threshold for the minimum number of provisional marker locations that must

be assigned to a trace for that trace to be retained in the next round. A trace set T is

initialized by separate initial traces t̃j as

T = t̃1, t̃2, t̃3....

In frame i, a position pix is appended as a marker location to trace t̃ij when it is the

closest provisional marker location to the average position of all the previous marker locations

in a trace and it is within the threshold γ. If no such provisional location exists for a trace

t̃ij, a gap t̃ij = ⊥ is marked for trace j in frame i. When a provisional marker location pix is

not appended to any trace, a new trace t̃ij is initialized with t̃ij = pix. After all provisional

marker locations are processed, traces which have fewer recorded positions than the threshold

minPoints are discarded and the positions are marked as unused data for future analyses.

Second Round of Clustering

The second round of clustering matches markers to traces using forward differencing (FD) to

predict future marker locations. FD with order s predicts an expected position Di
j for trace

t̃ij in frame i. Differencing ∆s
j is computed with order s(s > 0) for trace t̃ij from the previous

frames (i− s) to (i− 1):

33

www.manaraa.com

Figure 3.3: Clustering process for the second round.

∆s
j = ∆smj =

s∑
w=1

(−1)s

 s

w

mj+s−w. (3.1)

After getting the differencing values ∆s
j , the predicted new position Di

j for trace j in

frame i is estimated as

Di
j =

s∑
w=0

 s

w

∆w
j m

i−w
j . (3.2)

The predicted position Di
j preserves motion continuity from the previous s frames in

trace tj. Finding a new provisional marker position in the neighborhood of the predicted

position Di
j is more precise than searching in the locus of the average position because the

expected position varies with velocity and acceleration.

However, large accelerations can result in a predicted marker position that is at a

different location than the actual marker. If the actual marker lies outside the neighborhood

of the predicted position then the marker will be missed, a gap will be created in the trace,

and the marker position will be marked as noise. Later, after repairing gaps and swaps, it

may be possible to insert the missing marker position into the trace.

Figure 3.3 illustrates the clustering process. The image on the left shows the provisional

marker positions in f i. FD on markers 1 through 6 from f i−s to f i−1, where positions of

markers 1 through 6 from f i−1 are shown in light gray, is used to identify likely positions of

34

www.manaraa.com

markers 1 through 6 in f i. These likely positions are called neighborhoods and are contained

in the gray circles in the middle image. Next, for all marker positions mi
j in the neighborhood

of Di
k compute:

t̃ik = mi
j = min∀pix∀Diy

∥∥∥pix −Di
y

∥∥∥ . (3.3)

A provisional marker location pix is appended to trace t̃ik if pix is the nearest provisional

marker location in the neighborhood Di
k predicted from trace t̃ik. This is shown on the right

side of Figure 3.3 as one of the provisional markers is assigned to traces 1, 2, and 4. In each

case, the provisional marker location is assigned to a trace that has the nearest neighborhood

Di
k to the location. If no such pix lie within the forward differencing estimation then t̃ik = ⊥.

In Figure 3.3, trace 3 is assigned to ⊥ because no provisional locations lie close enough to the

position of trace 3 from f i. A provisional marker location pix might be mapped to more than

one trace—as is the case for traces 5 and 6 in the figure. In this case, the closest trace keeps

the provisional marker location pix while the others are marked as having a gap. In this case,

trace 6 is closer to the shared position and trace 5 is marked with a gap. If a provisional

marker location pix is not clustered with any trace then that position is marked as unused

data. The remaining black dots in the right side of Figure 3.3 are marked as unused data

and may be assigned to traces later, which is discussed in Section 3.4.4.

Figure 3.4 demonstrates a trace graph for 5 dangling ropes instrumented with 5

markers each. The left image is before clustering and the right is after. All traces are painted

in different colors. Black circles indicate the stationary positions of each marker. Noise and

unused data are detected but not shown in the image of the reconstructed traces on the right.

3.4.2 Swaps

Marker swap occurs when marker positions are assigned to the wrong trace. In our data,

marker swaps occur at a rate of about one swap per thousand frames of data. While swaps

are uncommon, swaps lead to visually implausible animations, as the rope appears to twist

35

www.manaraa.com

Figure 3.4: An input point cloud and clustering result.

and bend unnaturally. In many cases, swaps lead to the appearance of the rope stretching.

This is the key to detecting such swaps. A rope with length greater than the initial stationary

length is called a stretched rope and likely indicates a marker swap.

A segment is the span of rope between any two markers on a single rope. Stationary

marker positions from the first round of clustering are denoted m̄x and m̄y. With a distortion

factor α for length error tolerance, a rope segment between markers mx and my is considered

stretched if ∥∥∥mi
x −mi

y

∥∥∥ > α ∗ ‖m̄x − m̄y‖ . (3.4)

The distortion factor α is small enough to detect swaps before they are visually significant.

We set the value of α in [0.1,0.15].

We implemented two approaches for finding rope stretching: a case-based approach

and brute force. The case-based method only checks rope length when there is a reasonable

chance of swapping while the brute force approach checks rope length in every segment in

every frame.

In the case-based approach, we collect candidate swapping points based on two

assumptions: (1) when the distance between any two provisional marker locations is smaller

36

www.manaraa.com

than a threshold minDist and (2) after a gap whose length is bigger than a threshold

maxGapLen. After collecting all candidate swapping points, the segment length at a

candidate swapping frame is checked using equation 3.4. After two markers approach in

space, the following N frames have higher probability of containing a swap because the

clustering-based labeling process might swap positions. Therefore, segment length is checked

the N frames after markers pass in close proximity. A related segment is a rope segment that

contains candidate swapping points. A swap of two candidate points is detected and repaired

if the potential swapping satisfies two requirements: (1) before the swap, both lengths of

related rope segments are stretched, and (2) after the swap, at least one of these lengths is

corrected.

In the brute force method, the rope length is checked in each frame using equation 3.4

with a distortion factor α. When rope length is stretched in a frame, we try all permutations

for all marker positions for all ropes in a scene. Swap repair stops when all rope lengths are

not stretched or when all permutations have been checked. However, in the worst case, the

number of permutations is in the order of n!, where n is the number of marker locations.

That makes this approach infeasible in most cases.

3.4.3 Gaps

Given a trace, a gap is a sequence of frames in which recorded marker positions were not

assigned to that trace. Gaps are repaired by filling gaps with estimated locations. A small

gap has less than five continuous missing frames. Small gaps are fixed by linear interpolation.

Fixing a large gap uses assumptions about rope shape, statistical characteristics of the marker

and the movement of other markers on the same rope. This section focuses on repairing large

gaps.

A gap session is a span of time in which multiple traces have gaps. During a gap

session, multiple traces might have gaps with different durations. Smaller gaps and gaps in

traces with small ranges of motion (if any) are repaired first.

37

www.manaraa.com

Figure 3.5: Estimating the position of marker mi in the center frame of a long gap using the
positions of markers mj, mj1, and mj2.

A recursive midpoint displacement method estimates marker positions through large

gaps. This process is shown in Figure 3.5. Suppose the trace of marker mi includes a gap

from frames k to k + n and that the trace of nearby marker mj is complete over the same

span. Marker mj is adjacent in the sense that it lies next to, or near, marker mi on the rope

segment. Figure 3.5 contains rope positions in the top series of frames, and timelines at the

bottom of the figure show which marker positions in which frames are used to estimate the

position of marker mi at the frame k + n/2 in the middle of the gap. Marker locations in the

top series of frames and the timelines are color-coded. The process involves estimating the

distance between mi and mj, estimating the position of mi, and then estimating direction

from mj to mi. These estimates are generated from known marker positions in frames k,

k + 2 and the midpoint frame.

The estimated distance between known markers for the segment at the middle frame,

lc (where c = k + n/2), is computed by averaging the segment length between mj and mi

38

www.manaraa.com

(shown in purple in the figure) starting in frame fk and ending in frame fk+n.

lc =

(∥∥∥mk
i −mk

j

∥∥∥+
∥∥∥mk+n

i −mk+n
j

∥∥∥)
2

(3.5)

The preliminary location of mi in frame c, which is denoted m̃c
i , is the average of the locations

of mi at the start and end frames.

m̃c
i =

mk
i −mk+n

i

2
(3.6)

The position of mi at the start and end frames is shown in green in Figure 3.5.

Next, the direction from mc
j to mc

i is estimated using the weighted sum of the direction

from mc
j to m̃c

i and the direction between two other nearby markers mc
j1 and mc

j2 (shown in

red in Figure 3.5). The direction d̂c is given by

d̂c = Norm
[
α ∗

(
mc
j − m̃c

i

)
+ β ∗

(
mc
j1 −mc

j2

)]
, (3.7)

where α and β are weighting parameters.

Finally, the location of marker mc
i in frame c is determined by moving a total of lc

units along the normalized vector d̂c starting at known marker location mc
j:

mc
i = mc

j + lcd̂c. (3.8)

The new position is shown in blue in Figure 3.5.

The midpoint displacement method proceeds recursively and fills data in all the gaps

in the gap session. When length of a sub-session gap is fewer than 5 frames, it will be fixed

using linear interpolation.

39

www.manaraa.com

3.4.4 Add Unused Data

The unused data are revisited and added to existing traces if applicable. The nearest unused

provisional location piy to a marker location mi±1
x in the neighboring previous or next frame

fills a gap location mi
x = ⊥ if

mi
x = piy = min∀mix∀piy

∥∥∥piy −mi±1
x

∥∥∥ , (3.9)

where y ∈ y1, y2, ...yz and ranges over unused locations.

The segment length resulting from using the closest provisional location piu is evaluated

using equation 3.4. If the segment is not stretched and equation 3.9 is satisfied, the unused

provisional location will be added in a trace to replace a gap mi
x.

The process is repeated over the entire session. When there is a gap, the left and

right ends of the gap are processed first because there are data available in the neighboring

previous or next frames. This process is repeated for all gaps until no more unused data is

added to a gap.

3.4.5 Separate Rope Markers from Actor Markers

Rope motion captured with a human actor is separated from the actor’s motion. The

segmentation is an important step in our method for recreating animation of an actor

interacting with rope. Rope markers are separated from markers on the actor after grouping

markers into traces across frames. The clustering method used to group markers is identical to

the clustering method described above. Alternatively, it may be possible and more desirable

to separate rope and actor markers by tracking the actor skeleton as a collection of rigid

bodies and classifying the remaining marker positions as rope markers.

After the segmentation, rope motion is reconstructed from purported rope marker

positions by repairing gaps and swaps and then adding unused markers as described previously.

40

www.manaraa.com

Figure 3.6: Rope marker selection.

To initialize rope marker locations, a user makes a simple selection of all and only the markers

that belong to the rope, as shown in Figure 3.6.

As in Section 3.4.1, at each frame we attempt to find a provisional marker location that

is in close proximity to the next estimated position for a marker trace. When no provisional

marker location can be found for a trace, instead of labeling a gap, we create a temporary

marker for the marker trace. The temporary marker allows the algorithm to continue tracking

a marker despite the presence of noise and gaps in the motion capture data.

In order to track a marker, we match provisional markers to traces using a linear

combination of two predicted positions, V i
j and N i

j . The first predicted position, V i
j , is based

on the last known velocity of the marker using equations (3.1), (3.2), and (3.3). The other

position, N i
j , is predicted using a midpoint displacement method, as described in Section

3.4.3, using equation (3.5)–(3.8).

Then V i
j and N i

j are combined as follows:

F i
j = αV i

j + (1− α)N i
j , (3.10)

41

www.manaraa.com

where α is one over the number of consecutive temporary markers. This means that

the more consecutive temporary markers the trace has the less we rely on V i
j , because it

could have strayed too far from the actual rope markers. After fully segmenting the rope

markers from the human markers it is possible to reconstruct the motion streams for each

independently.

3.5 Results

We present results that indicate that, under the assumption that the rope does not stretch,

rope motion can be plausibly reconstructed from passive optical motion capture data without

a physical model of rope dynamics. This can be done in the presence of a human actor whose

motion is tracked in the same capture session.

Figure 3.7 shows the reconstruction of a motion capture session in which the character

is jumping rope. Comparison with still frames taken during the capture session shows that

both the marker segmentation and reconstruction algorithms accurately reproduce the original

motion.

Gap filling results in motion that is similar to missing motion in both magnitude and

direction and has good continuity with surrounding motion. Figure 3.8 shows the average

error for reconstructed marker positions for gaps created by holding back data from a motion

capture session. The horizontal axis shows the gap size in frames and the vertical axis shows

the mean error for all frames in gaps of that size. The data in Figure 3.8 were generated from

5,000 randomly generated gaps. The curve is not smooth because of the random factors we

included in the analysis. A gap created at different phases of a motion path might produce

different values of error.

Figure 3.9 compares the original shape of the model with our results. In the top row

of Figure 3.9(a), we compare the ground truth motion data (left) with data generated by the

gap-filling algorithm (right). The data shown in dash-dots on the left and right sides of each

image is held back during gap filling. The synthesized motion, which is the bottom marker

42

www.manaraa.com

Figure 3.7: Screenshots of the original motion, segmented rope and character markers, and
the reconstructed rope with the human markers.

in solid lines on the right image of (a), preserves good continuity with existing motion and

rope shape. Figure 3.9(b) shows traces (right) created from raw point cloud (left).

The process accurately extracts motion in a variety of settings. Still images from both

video taken during a capture session and reconstructed motion from that session are shown

in Figure 3.9(c)–(f). Each scenario is described subsequently, and complete video clips are

included as reference material with this paper.

Five dangling ropes, as shown in Figure 3.9(c), have one end fixed to a horizontal

support bar and rope motion is driven by hitting the ropes with a stick. This scenario is

easy to process because one end of the rope is anchored to a fixed position in space and rope

motions are relatively small. The resulting motion is smooth with few gaps and little noise.

We recorded a rope dropping from the horizontal support bar (shown in Figure 3.9(d)).

The rope has one end fixed to the bar. The rope is nudged over the edge of the bar using a

43

www.manaraa.com

Figure 3.8: Analysis of gap-filling algorithm. The horizontal axis is gap size and the vertical
axis is error, which is the difference between the motion captured data after clustering and
the data estimated by our method.

stick. This scenario is more complex than the five dangling ropes because the rope moves

more quickly and with more bending. We processed this data in inverse time order, so the

structure of dangling rope is clearer at the end than at the beginning of the session .

The motion of unanchored ribbons is more difficult to process because ribbons have

less mass and are not anchored in this example. Figure 3.9(e) and (f) show two frames

from two sessions involving ribbons attached to a wand that is waved freely in the capture

arena. Ribbon is also more difficult because it is a lighter material that accelerates with less

force than rope. By mapping different textures to the single ribbon motion, we create some

interesting effects, such as animating lace cloth and a Japanese fish flag based on captured

data.

3.6 Conclusion and Discussion

Our work produces visually plausible rope motion from passive optical motion capture data

using a statistical model under the assumption that the rope does not stretch. The algorithm

uses a novel clustering scheme, forward differencing, and a recursive midpoint scheme to

automatically detect and remove most noise, gaps, and marker swaps. The algorithm preserves

44

www.manaraa.com

Figure 3.9: Screenshots of reconstructed motion of ropes and ribbon.

continuity of motion in traces and fits the shape of rope. This work lays a foundation for

further investigation of motion capture for non-rigid bodies using statistical rather than

physical models. The approach to the problem may advance motion capture results for

non-rigid bodies driven by complex or poorly understood physical systems.

Complicated motions (such as spirals, collisions, sudden changes in movement, or

extremely fast movement) are not well handled in this model. Our assumptions for detecting

swaps may be oversimplified relative to natural movement. Consideration of other factors,

such as velocity or acceleration, might improve gap-filling results. We have used a simple

method for interpolating rope position between markers. More complex methods may result

45

www.manaraa.com

in more plausible results particularly when the distance between markers on the rope is

large.

46

www.manaraa.com

Chapter 4

3D Tree Modeling Using Motion Capture

Jie Long and Michael Jones. 3D Tree Modeling using Motion Capture. IEEE The Fourth In-

ternational Symposium on Plant Growth Modeling, Simulation, Visualization and Application

(PMA ’12), to appear.

Abstract

Recovering tree shape from motion capture data is a first step toward efficient and accurate

animation of trees in wind using motion capture data. Existing algorithms for generating

models of tree branching structures for image synthesis in computer graphics are not adapted

to the unique data set provided by motion capture. We present a method for tree shape

reconstruction using particle flow on input data obtained from a passive optical motion

capture system. Initial branch tip positions are estimated from averaged and smoothed

motion capture data. Branch tips, as particles, are also generated within bounding space

defined by a stack of bounding boxes or a convex hull. The particle flow, starting at branch

tips within the bounding volume under forces, creates tree branches. The resulting shapes

are realistic and similar to the original tree crown shape. Several tunable parameters provide

control over branch shape and arrangement.

47

www.manaraa.com

Figure 4.1: Maple model.

Figure 4.2: Various tree shapes generated from the same set of motion capture data.

4.1 Introduction

Reconstruction of tree shape from motion capture data is an important step in replaying

motion capture of trees under external forces, such as natural wind. Motion capture provides

a fast and easy way to collect the locations over time of retroreflective marker locations

placed on an object. In this paper, we address the problem of creating 3D tree shape from

motion capture data. We also discuss best practices for collecting motion data from a tree.

This research focuses on reconstructing static 3D tree shape with branching skeletons from

data collected by a motion capture system.

Solutions to the motion capture problem for trees can be applied to problems in visual

effects and the study of tree motion. Motion capture is a potential solution because motion

capture data includes effects that are difficult to model in simulation, such as variable branch

stiffness, non-uniform variation in size, and emergent effects due to leaf deformation.

48

www.manaraa.com

Tree shape modeling has long been studied in computer graphics. Past methods

include particle systems [29, 34, 46, 50], L-systems [20, 21, 43], parametric models [60],

photographs [29, 45, 58], and videos [8, 19]. Most of these methods result in satisfying

tree shapes but do not leverage the 3D positions of motion capture markers, which are

recorded as part of a motion capture session but require a different set of inputs. Image-

or video-based approaches convert a set of 2D input images into 3D tree models by filling

in the missing dimension. Motion capture systems can record tree shape in 3D with high

precision (using similar techniques for converting a set of 2D images to a 3D model). Prior

work in reconstructing tree shape from motion capture data using either exact measurements

or markers placed within the crown does not scale and does not apply when leaves occlude

the branching structure.

We reconstruct 3D tree shape using particle flow with motion capture data as input.

Passive optical motion capture1 records locations of reflective markers in the capture arena.

We place markers only at branch tips on the edge of the tree crown. Approximately 30

markers cover the crown shape of a medium-sized tree. We do not put markers on each

branch tip because passive optical motion capture systems cannot reliably track more than

70 markers. A particle flow algorithm generates branching structures starting at the recorded

tip positions. Additional starting points are defined within the estimated volume of the

tree crown using a vertical stack of bounding boxes or a convex hull. The bounding space

approximates the tree crown and bounds particle flow and creation. The step length of a

particle’s flow varies with the distance to the nearest trunk point. The direction of particle

motion is a combination of three forces: gravity, shape-format, and wind. The shape-format

guides the particles to preserve the original tree shape. The dominant wind direction is

recorded during the motion capture process. We also introduce two vectors with one pointing

to the nearest trunk point and the other pointing to a constant predefined attractor point.

These vectors are factors for the direction and magnitude of the forces.

1http://www.naturalpoint.com/optitrack/

49

www.manaraa.com

In this paper, we propose a new particle flow method for reconstructing tree shape

from only motion capture data. Our primary contributions are

• a simplified particle flow algorithm for constructing tree shapes from a sparse set of

branch tip positions as collected as part of motion capture and

• a method for deploying passive optical motion capture to reconstruct the shape and

motion of trees in the laboratory.

The combination of motion capture with a particle flow method provides a fast and

easy approach for creating complex 3D tree shapes. The resulting tree shapes are similar

to the original trees, as shown in Figure 4.1, and can be used to replay motion similar to

the captured motion. With the flexibilities of tuning the forces, we can produce several tree

shapes besides the original shape. Figure 4.2 shows various tree shapes generated from the

same set of motion capture data and demonstrates the flexibility of our forces for guiding

particle flow.

4.2 Related Work

Our work is most closely related to prior work in tree modeling and applied motion capture.

Our purpose is to investigate methods for creating tree shapes on which motion capture

data can be replayed. Compared to prior work in modeling trees, we use motion capture as

our equipment to collect partial information of tree shape and run particle flow to complete

the modeling. Compared to prior work in motion capture, we design a new data collection

process for non-rigid bodies and reconstruct realistic 3D models out of the data.

4.2.1 Tree Modeling

L-systems [20] generate a tree’s branching structure using axioms and rules in a concurrent

context-free rewriting system. L-systems have been extended in many ways. The extension

most relevant to our work is [43], in which L-systems are enriched with partial differential

50

www.manaraa.com

equations and can be parameterized to reconstruct the shape of a specific tree or plant. We

chose not to investigate L-systems, or Weber and Penn’s parametric tree model [60], for this

application because particle flow from recorded branch tip positions closely matches the data

collected in motion capture.

More recent work in tree shape modeling involves particle systems. With the exception

of Palubicki’s work [34], particle systems approximate tree shapes obtained from photographs

[29, 45, 58]. Palubicki et al . devised a particle flow which approximates bud fate models.

These methods are not directly applicable to motion capture data because these methods

use photographs or environmental conditions that are not collected during motion capture.

Photographs of the tree could be taken during motion capture (and indeed are taken during

optical motion capture), but we only take marker positions as input because this simplifies

data collection and processing by reusing the background removal and image alignment

performed as part of marker position calculation.

4.2.2 Applied Motion Capture

Motion capture has been mainly used in rigid bodies, such as human motion. It produces

positions for points on an object over time with very small measurement errors.

Motion capture systems have been widely used for human or animal motion capture

[25, 44, 62]. Kirk [16] automatically generates rigid skeletons from optical motion capture

systems by preserving a constant distance for each rigid part. These algorithms assume that

the distance between markers on the same bone is invariant and cannot be directly applied to

non-rigid bodies, such as natural trees, because the distance between markers is not invariant

as the object deforms.

Prior work in motion capture for non-rigid bodies includes several approaches to facial

motion (including [26, 54]). These methods are based on domain-specific features of the facial

structure or patterns. Obviously these domain-specific features do not apply to tree shape

reconstruction or motion capture.

51

www.manaraa.com

The uniform branching structure of human bodies has led to well-understood processes

for deploying markers on a human. The number and placement of markers is a critical part

of successful motion capture using a passive optical system. Trees have a more complex and

less predictable topology and require a different approach to marker placement. Previously

[23], researchers attempted to directly replay the motion of a tree in wind following the

exact motion paths collected for all branches by putting markers on every branch of the

tree. Leaves on the tree create marker occlusion, which results in poor data. In addition,

manually defining branch topology to exactly match the subject tree is labor intensive. In this

paper, we design a data collection and tree modeling process to overcome these difficulties by

building a similar, but not exact, copy of the branching structure from a partial collection

of branch tip positions. Ongoing work focuses on replaying collected motion such that the

motion looks natural on an approximate copy of the branching structure.

4.3 Motion Capture of Trees

In this section, we describe how to collect data from trees using a motion capture system

such that the data supports reconstruction of tree shape. The data is collected indoors on

trees with heights less than 2.5 meters. The data collection process results in an unindexed

set of marker locations over time for a small set of instrumented tree branch tips.

We use a passive optical motion capture system (Optitrack V100 by NaturalPoint)1

to collect data. The passive optical capture system strikes a balance between conflicting

features. Passive optical systems can reliably track up to 70 markers, and some markers

weigh only a few grams. This is ideal for working with tree crowns. Active optical and active

magnetic systems use heavier markers and cannot track more than 20 markers at once. The

magnetic systems have the advantage of not having visibility occlusions and being able to

track position and rotation, but they are more expensive than passive optical systems and

1http://www.naturalpoint.com/optitrack/

52

www.manaraa.com

can track fewer branch tips. Magnetic system markers are heavier and may alter branch tip

motion.

Collecting data from natural trees is challenging for passive optical motion capture

systems because trees are non-rigid bodies and are partially self-occluding. The following

method for deploying passive optical motion capture systems collects data from which tree

shape and motion can be inferred.

Twelve or more cameras are arranged in a circle around the tree with six cameras

located approximately 0.8 meters above the ground and another six cameras are located 3.3

meters above the ground. For each camera, the field of view is adjusted to include the entire

tree. About 30 markers are placed on branch tips throughout the crown. Markers are square

retroreflective markers with a surface area of about 1 cm and adhesive backing. Markers

are placed to cover branch tips on each major branch from the stem and to provide nearly

uniform coverage of the crown. On these branch tips, the square-shaped markers are wrapped

to cover the whole tip so these markers are visible to most of the cameras from different view

angles. Uniform coverage improves both shape reconstruction and motion capturing. Placing

markers such that their motion paths overlap complicates algorithms for extracting motion

paths from unindexed marker positions. For a medium-sized tree, the number of branch tips

exceeds the number of markers so that not every branch tip is covered by a marker. Leaves

around the marker are removed to improve marker visibility so the resulting 3D tree shape

preserves the shape of the original tree crown. While recording tree motion we use an electric

fan to create wind around the tree because data is collected indoors. The wind direction is

inferred from where the fan sits relative to the tree. Other statistic methods, such as PCA

(principle component analysis) can also compute the dominant wind direction after motion

data of branch tips are processed.

Photographs in Figure 4.3 show the arrangement of the motion capture cameras and

the reflective markers as deployed on an indoor pine tree. Markers are placed at branch tips

53

www.manaraa.com

Figure 4.3: Marker placement on the crown periphery avoids occlusion while generating data
that can be used to generate crown structure.

shown as white dots in the image. The right side image shows marker locations in the red

box on the left side image.

Our design requires less user intervention, produces cleaner motion capture data , and

may support animation of tree motion.

4.4 Data Processing

Simply inferring positions from one frame of captured data is not adequate due to noise.

These branch tips with markers are called ”recorded” or ”captured” tips. However, the initial

locations of recorded branch tips may contain errors due to noise in either the system or the

capture environment.

A clustering algorithm approximates a single initial position from a collection of

captured initial positions for recorded branch tips while minimizing error from the motion

capture system. The clustering algorithm analyzes positions over many frames of motion

capture data and eliminates gaps and noise. Gaps occur when a marker is not present in a

frame. This algorithm uses forward differencing to predict a position for a marker at frame M

based on positions in previous frames. The closest marker in the next frame is added to the

motion trace for the marker if there is a marker located close enough to the predicted position.

If there is no marker position recorded close enough to the predicted position, that marker is

marked with no data, i.e. a gap, for that frame. Gaps are repaired using interpolation over

54

www.manaraa.com

the motion path for a marker. If the number of marker positions recorded for a marker over

time is less than 1/4 of the total frames, that partial marker trace is marked as noise and

eliminated.

If the capture process includes several hundred frames of data in which the tree is not

moving, averaging branch tip positions over these frames results in precise estimates of initial

positions. In most cases, the number of markers inferred from the clustering process matches

the number of markers placed on the tree.

4.5 Generating 3D Tree Shape

Particle flow is a well-studied approach to generating 3D branching structure for trees

[29, 34, 46, 50]. We adapt the method to motion capture data. The 3D tree crown boundary

inferred from motion capture data constrains the particle range and preserves the original

3D tree silhouette. We use a stack of bounding boxes or convex hulls to represent the crown

boundary. Particles, either generated randomly in the boundary or locations of branch tips

recorded by motion capture, are moving towards trunk nodes. Three forces—gravity, internal

force, and external force—drive the particle flow process. The paths of the particle flow

produce branching structure. By attaching leaves to the branching structure, we generate a

3D tree model that has similar appearance as the natural tree shape.

We synthesize a trunk in the center of the crown shape, as shown in Figure 4.4. Figure

4.4a shows a photograph of a pine tree with markers placed on its crown. Figure 4.4b contains

a bounding box of these marker locations and a straight vertical line representing trunk

shape. The length of the line is scaled by the crown height of the bounding box. On this line

segment, we generate about 10 trunk nodes. Random offsets to these nodes in the x and z

direction are added as shown in Figure 4.4c.

A particle represents a branch tip. One group of particles is 3D positions of branch

tips recorded from motion capture, which is described in Section 4.4. Figure 4.4a shows a

photograph of a pine tree with markers placed on the crown. All the branch tip locations

55

www.manaraa.com

(a) A pine tree with
markers.

(b) A straight line represents
the trunk.

(c) Adding random offsets
looks more natural.

Figure 4.4: A simple trunk model is added to the collection of branch tip positions.

recorded by motion capture are labeled with white dots. These particles are shown in black

circles in Figure 4.5c and Figure 4.6.

Because of motion capture’s limited capability, we cannot record locations for every

branch tip on the tree. Another group of particles is randomly generated within the bounded

space of all the recorded branch tip positions. In Figure 4.5c and Figure 4.6, these particles

are green.

Instead of using one single bounding box for the whole tree crown, we create a vertical

stack of bounding boxes as shown in Figure 4.5. The new bounding boxes more closely match

the tree shape. In Figure 4.5c, the crown height is evenly divided into four parts. Particles

are randomly generated inside the smaller bounding boxes, as shown using green dots in

Figure 4.5c. The total number of branch tips, including motion capture branch tips and

randomly generated particles, is set to be similar to the original tree. The number of green

dots in each box is proportional to the number of black dots. Therefore, we maintain a similar

total amount and distribution of natural tree branch tips.

Alternatively, we use a convex hull for all the particles, as shown in Figure 4.6. A

convex hull provides more precise bounding space than the stack of bounding boxes. However,

it requires a (slightly) more complex boundary detection scheme and more implementation

56

www.manaraa.com

(a) (b) (c)

Figure 4.5: New particles are added within a vertical stack of bounding boxes.

Figure 4.6: A convex hull for all the particles. Particles in black color are from motion
capture and particles in green color are randomly generated inside the convex hull.

details. Because of the precision that a convex hull brings, we recommend this approach for

building a bounding volume.

For the pine tree’s trunk, we generate nine nodes in a straight vertical line and add

random offsets in the x and z directions to these trunk nodes. The length of the line is scaled

about 1.2 times the pine tree’s crown height.

57

www.manaraa.com

(a) Flow direction
depends on root at-
tractor and near-
est trunk point po-
sitions.

(b) Root attractor point Sr
and nearest trunk point St.

(c) Particle flow ends when a
particle merges with a neigh-
bor or with the trunk.

Figure 4.7: A simple particle flow results in crown branching structure.

Trunk nodes contain a root attractor point and a nearest trunk point, as shown in

Figure 4.7. The root attractor point, shown in green, is the trunk node closest to the lower

bound of the bounding box for the entire crown. The nearest trunk point, which is shown in

blue for the red particle in Figure 4.7a, is the closest trunk node to a single particle.

Particles move under directions of three forces: gravity, shape-format, and dominant

wind. In Figure 4.8, we describe the direction and magnitude of each force. Gravity points

vertically down to the ground. We assume that a particle has higher mass when it is closer to

the trunk. This assumption follows the observation that when closer to the trunk, a branch

has a larger radius. For a particle with higher mass, it has a larger magnitude of gravity

and moves faster in the vertical downwards direction. Under this assumption, we set the

magnitude of gravity proportional to the distance between a particle position Sp and nearest

trunk point St.

We call the second force shape-format. Arborists distinguish styles of growth habit of

trees using different classifications, such as excurrent and decurrent. The force tries to guide

particle flow to follow the growth pattern of the original tree. Simulating different growth

patterns requires different definitions of the shape-format force. In this research, we provide

a simple example of shape-format definition. The shape-format force, shown in Figure 4.8,

58

www.manaraa.com

Figure 4.8: Forces: gravity, shape-format, and dominate wind. Sp: position of a particle. Spy
is position of a particle in y direction. St: position of the nearest trunk point. Sr: position of
the root attractor point. Fw: wind measured from motion capture setup. α: scaling weight
in range of [0, 1]. n: number of particles.

guides the particle flow process by height and depth of a tree crown. The direction of the

force is pointing to the root attractor point Sr from particle location Sp. The magnitude of

the force is the average height of all the particles with a weight parameter α. The higher the

center of all the particles, the stronger the shape-format force points to the root attractor

point Sr. This force is a pre-computed global force, which is a constant for all the particles.

The direction of the force ensures that a particle finally merges to trunk nodes, and therefore

all the branches grow towards the trunk.

The dominant wind direction is recorded from the motion capture setup, as described

in Section 4.3. Wind force is a special case of external force acting on the tree’s branching

shapes and structures. While doing motion capture, we record the location of the electrical

fan. Because we only use one fan to create wind, that is the only source of explicit external

force. Alternatively, the dominant wind direction can be inferred from tree movements

recorded in motion capture data. Statistic methods, such as PCA , can estimate the dominate

wind direction.

The flow of particles starts at branch tips. Some particles merge in the flow process

while others eventually reach and merge to the trunk. At each time step, we compute for

step size and direction of a particle. The step size L is:

L = β ∗ ||Sp, St||, (4.1)

59

www.manaraa.com

where β is a tunable parameter in range of [0.1, 0.5] for most of our tree models.

The step direction combines all the three forces. Figure 4.7b shows the computation of the

direction for particle i, which is shown as particle A in Figure 4.7b. Each force has a weighting

parameter ω that tunes the relative importance of each vector and provides flexibility in

creating branching shapes. The particle step direction ~Di is given by

~Di = (ω1 ∗ ~Gi + ω2 ∗ ~Si + ω3 ∗ ~Wi)/3, (4.2)

where ω is the weight of the direction, ~Gi is direction of gravity, ~Si is direction of

shape-format, and ~Wi is the wind direction for particle i where i ∈ [1, ..., n].

Using step size L and direction ~D, the new particle position V (m) is given by

V (m) = V (m− 1) + L ∗ ~Di, (4.3)

where m is current time step and V (m− 1) is the particle position at the last time

step.

At each time step, after updating all the particle positions, particles might be merged.

When the distance between a pair of particles is less than a predefined merging threshold,

those particles are combined. When the distance between a particle and a trunk point falls

below a predefined merging threshold, that particle is merged with the trunk. In Figure 4.7c,

we demonstrate the paths of particle flow. Particle A, B, and C are moved using the step

and direction. Particle A and B are merged at point AB and finally merged to the trunk.

Particle C merged to the trunk point after two time steps of movement.

4.6 Adding Leaves

Tree leaves are visually important to 3D tree models. After the branching structure is

generated, leaves are attached. We use predefined leaf shapes, growth patterns, densities,

and sizes. Also, because leaves do not always start growing at the beginning of a branch, we

60

www.manaraa.com

(a) Original collected data.
(b) Remaining branch tip locations after
clustering.

Figure 4.9: Clustering that removes noise that leads to spurious marker positions.

set a parameter called the leaf starting point. This parameter is proportional to a branch

length. For example, when the parameter is 0.3, it starts leaves after the point that is 0.3

times the branch length away from the branch starting point.

4.7 Results

Results are given for multiple trees, including maple and pine trees. The maple tree is

instrumented with 24 markers placed on the periphery of the crown at branch tips and

the pine tree is instrumented with 35 markers also located on branch tips. We collect

the stationary locations of these markers for about 20 seconds at the capture rate of 100

frames/sec.

Figure 4.9a shows all the recorded locations as red dots for a single frame, and Figure

4.9b shows averaged locations from each cluster of marker positions for clusters in which

the number of frames with a position in that cluster is 1/4 of the total frame count. The

data is recorded when the tree is stationary. Notice that a point in the blue box in Figure

4.9a is identified as noise and removed by the clustering algorithm. For the maple tree, after

clustering and averaging only 24 markers remain and this matches the actual number of

markers placed on the tree.

Although initial marker positions are collected before wind is applied when the tree

is stationary, the data contain a small amount of noise, which can be removed to create a

single initial marker position. In Figure 4.10, we show marker positions over time for two

61

www.manaraa.com

(a) Close to white noise. (b) Noise with apparent periods.

Figure 4.10: Marker positions over time contain a small amount of spurious motion that is
removed by averaging.

markers during the stationary phase. The horizontal axis shows time while the vertical axis

shows a marker location in 3D space. In the first image, movement in each direction spans

10−3 meters. In addition, in the second image there is apparently a small periodic motion for

the stationary branch tip. The range of motion is also within 10−3 meters. In both cases,

averaging removes this small motion and estimates initial marker positions based on the

average rather than a single position in a single frame.

A vertical stack of bounding boxes is a better approximation for the crown volume

than a single bounding box and results in better crown shapes. Each bounding box contains

branch tips and additional branch tips are added to each box. Figure 4.11a and Figure 4.11b

illustrate the difference between tree crowns created with and without a stack of bounding

boxes for a pine tree. Random particles placed uniformly within a single bounding box

result in a cube shaped tree. Placing particles in a vertical stack of bounding boxes better

approximates the original crown shape. Future work might include investigating non-uniform

distributions of randomly inserted points instead of using bounding boxes.

In Figure 4.11c and Figure 4.11d, we demonstrate the difference between tree shapes

using stacked box bounding volumes and those using convex hull bounding volumes. The

bounding box approach provides a looser bounding condition and allows more random factors

in the final tree shape. The convex hull approach more closely approximates the original tree

crown shape.

62

www.manaraa.com

(a) (b)

(c) (d)

Figure 4.11: Bounding volumes affect tree shape.

63

www.manaraa.com

Figure 4.12: Pine tree model. 3D tree models created from branch tip positions are similar
to the shapes of the trees from which branch tip positions were collected.

Particle flow starting from branch tips and using our simplified algorithm results in

tree crown shapes that mimic the shape of the tree from which data were collected. In the

Figure 4.12, we show the results from reconstructing a pine tree.

Besides replaying the original tree shape, our approach has enough flexibility to

produce different tree shapes based on the same set of motion capture data. Three forces with

their scales create particles’ moving paths, which represents branching structures. Figure 4.13

demonstrates that shape-format force sets the global attracting trunk node, which controls

the converging direction of particle flow. The resulting tree models display trees’ growth

styles in terms of excurrent and decurrent.

Figure 4.14 shows the impact of gravity on trees’ shapes with various values for the

weighting factor. When the factor is set to be negative, we create a special willow-like tree

shape.

Figure 4.15 shows tree models with different weighting factors of wind force. Bigger

values of the factor produces branches bending more toward the wind direction. Notice that

64

www.manaraa.com

(a) (b)

Figure 4.13: Shape-format force.

(a) weighting factor: 0.01 (b) weighting factor: 0.20 (c) weighting factor: -0.20

Figure 4.14: Tree shapes with different weight factors for gravity.

65

www.manaraa.com

(a) Weighting factor: 0.01. (b) Weighting factor: 0.07. (c) Weighting factor: 0.15.

Figure 4.15: Tree shapes with different weighting factors for wind force.

the differences among these tree models are small, especially when compared to the influence

from the other two forces. This is because the value of force for a global wind direction is set

to be much smaller than that of the other two forces. Otherwise, when wind force dominates

the direction of particle movement, the particles might not be able to merge to a tree’s trunk

and might violate natural tree’s shape.

In Figure 4.16, we generate 3D tree models with different parameters for particle flow

with the same set of motion capture data. These results demonstrate that our approach

produces visually plausible tree shapes, which becomes scalable for more extended shapes

through tweaking parameters of the three forces.

4.8 Discussion and Future Work

Placing retroreflective markers on branch tips evenly spaced throughout the crown on trees

located in a passive optical motion capture arena results in data that can be used to reconstruct

tree shape and which may be usable for replaying branch motion. This can be done using a

simplified particle flow system starting from recorded branch tip positions supplemented with

additional random branch tip positions within a horizontal stack of bounding boxes and by

66

www.manaraa.com

(a) (b) (c)

Figure 4.16: Various tree shapes.

setting two control parameters. A new data collection process designed for trees may extend

the use of motion capture to include trees and eventually other networks of non-rigid bodies.

Future work includes extending the process to large trees outdoors as well as improving

methods for animating the resulting tree models using the motion capture data. We have

reconstructed an approximate tree crown branching structure. Replaying the captured motion

data will require care to ensure that the motion of the approximate branching structure does

not include uncorrelated motion for branch tips who share a common parent.

67

www.manaraa.com

Chapter 5

A Realistic 3D Tree Model Based on L-Systems

Jie Long and Michael Jones. A Realistic 3D Tree Model based on L-Systems. Report for

UNEP Eco-Peace Leadership Center (EPLC), 2008.

Abstract

Constructing a 3D tree model manually is time consuming due to the natural complexity

of tree shapes. We introduce a new morphology-based method using L-systems for realistic

3D tree modeling. Using L-systems for describing tree branches as particles, this method (1)

introduces a hemisphere to generate particles, (2) uses a growth level to simulate different

ages of branches, and (3) applies a dynamic bounding box to detect local growth area in a

tree. This new method enhances the management of tree shapes by easing the control over

distributions of branches and leaves. To further validate the method, we demonstrate that

the method can simulate photorealism and growth around physical barriers. We evaluate this

model by particle flow and by complexity, showing performance competitive with existing

methods.

68

www.manaraa.com

5.1 Introduction

The natural complexity of trees has been challenging computer graphics for decades. Many

applications—film, 3D video games, city planning, and forestry—require clear, detailed 3D

tree models. Although methods exist for creating photorealistic tree models, these methods

are still cumbersome. Efficient methods for constructing 3D tree models are needed to deal

with the intractable computation of the detailed geometry. Since trees have many properties

due to the growth environment and kinds, models with global controls over shapes are also

important.

In recent years, techniques on image-based reconstruction and L-systems have been

widely used in 3D tree modeling research. Both methods have advantages and shortcomings.

Image-based reconstruction generates natural-looking 3D trees through image processing, but

models are limited to trees in the image and most need time-consuming manual modifications.

Although L-systems are efficient and easily implement in 2D or 3D tree models, using L-

systems representation alone makes it difficult to control small components in a tree (e.g., a

certain twig).

In this paper, we introduce a new method for 3D tree modeling based on L-systems.

This new method presents a 3D tree model with three innovations: a hemisphere, level

controls, and a dynamic bounding box. First we build a branch library using L-systems. A

branch unit, which is also a unit of L-systems and works as a particle, has several twigs.

A hemisphere on the top of a tree model controls the distribution of branches and leaves.

The growth levels simulate different ages of branches and leaves. A dynamic bounding box

constrains the local growth area in a tree by avoiding outer forces. In the implementation,

particles are generated on the hemisphere surface and begin to move in the hemisphere with

different starting angles. A ray defined by the position and angle of a particle is attracted

to the nearest branch in the existing tree. After a new branch attaches to the existing tree,

we enlarge the bounding box to the new tree shape. This bounding box grows with the tree

volume and can detect collisions with other objects or growth obstacles. In each growth

69

www.manaraa.com

interval, a certain number of branches are generated and distributed. In addition, leaves have

initial parameters for shapes, sizes and colors. We also distribute leaves from the hemisphere

surface. In each growth stage, leaves have different sizes and colors, but the same shape.

There are four steps in this 3D tree modeling. First, L-systems generate different

branch patterns. Second, a hemisphere designates probability distributions for generating

particles. Third, a branch from the branch library is randomly selected, a particle is generated

on the designated area, the ray to the tree model is computed, and the nearest growth point

is found. Finally, after constructing branches for the whole tree, leaves with different sizes

and colors are added to this model.

Using this new method, a 3D tree model is more efficient and controllable. We take

advantage of L-systems to describe branches for efficiency while overcoming the control scale

problem. L-systems and image-based methods control the whole tree at one time. They

generate tree models as a whole. However, our method manages small components of a

branch, but not the smallest components of twigs. The second advantage of this new method

is the ease of control over tree shape. The hemisphere controls distribution probabilities to

shape a tree. The bounding box flexibly constrains a proper growth area to detect outer

barriers like rocks and buildings. The parameters of a desired shape are far less than existing

methods. In addition, our method can distribute leaves with the same shapes but with flexible

sizes and colors due to the growth level of branches. Current methods including L-systems

and image-based approaches can’t manage the age-based distributions of leaves. Also, we

carried out a set of experiments to validate this new method: photokinesis simulation and

growth around physical barriers.

5.2 Related Work

Two main research directions in tree modeling are biology-based and morphology-based.

Models that mimic biological data are based primarily on patterns of tree growth. Some

tree modeling software, such as AMAP, COSSYM, and SVS, simulate tree growth based

70

www.manaraa.com

directly on biological data. Morphology-based methods focus on reconstructing tree shapes

from photographs or remote sensing (RS) images. Both biology-based and morphology-based

methods have applications in different areas. Forestry research uses biology-based models, and

3D games and movies use morphology-based models. Our system is mainly morphology-based

while also considering some biology characteristics of natural trees. In this section, we discuss

two primary morphology-based tree modeling methods: L-systems and image-based models.

5.2.1 L-systems

An L-system is a formal grammar that describes the recursive growth of a tree. The rules of

the grammar must be written by the user. Since the rules are applied locally, small changes

in the rules may cause large changes in the overall tree shape. Such behavior makes modeling

quite difficult. Various extensions of L-systems have been proposed, including parametric

[41], open [28], and differential L-systems [42]. These extensions are able to create a variety

of effects, but also require additional parameters from the user. Prusinkiewicz et al. [43]

present a modeling interface for L-systems to enhance the modeling ease, but a large set of

parameters still has to be defined by the user.

L-systems have both advantages and shortcomings. L-systems generate 2D and 3D

tree models efficiently. This method is easy to implement. However, L-systems generate tree

models at one time after defining an algorithm. Further modification of models is difficult.

L-systems go too far in simplifying tree models, so the results are not realistic.

5.2.2 Image Reconstructions

Reconstruction of tree shapes from photographs is an active area of research in 3D tree

modeling. 3D tree models from this method look natural because they are based on the

morphology of actual trees. People can use 2D source images, which are easily collected using

consumer digital cameras, to generate 3D tree models for almost any interesting trees.

71

www.manaraa.com

Shlyakhter et al. [53] direct the growth of L-systems using photographs. The registered

input images reconstruct a visual hull. The medial axis diagram of the hull constructs the

tree skeleton. L-systems describe smaller branches and leaves.

Reche Martinez et al. [45] describe a very precise, though complex, image-based

approach. In this case a set of carefully registered photographs determines the volumetric

shape of a given tree. The volume is divided into cells; for each cell a set of textures compute

a valid visual representation. The complete set of textures represents the tree quite faithfully.

Neubert et al. [29] present a method to produce 3D tree models from 2D photographs

using particle flows. Using image information, the author estimates an approximate voxel-

based tree volume. Performing a 3D flow simulation, particles form the twigs and branches.

The botanical rules for branch thicknesses and branching angles produce the geometry of the

tree skeleton.

Tan et al. [58] propose an approach for generating 3D tree models from images. This

method requires little user intervention. This research populates the tree with leaf replicas

from segmented source images to reconstruct the overall tree shape. In addition, shape

patterns of visible branches can predict those of obscured branches.

5.2.3 Other Methods

There are some other famous approaches for tree modeling. Aono et al. [2] presented the

A-system. Oppenheimer [31] proposed the animation based on a fractal method. Reeves [47]

introduced a modeling method based on particle flow. Reffye et al. [7, 66] presented a model

based on botanical structures. Weber et al. [61] presented a method on generating trees in

several steps. Kurth’s team [17] developed LIGNUM [36] for 3D tree modeling.

5.3 Tree Modeling Using L-systems

Our method has four main parts: a branch library on L-systems, a hemisphere, growth level

controls, and a dynamical bounding box. L-systems are easy for describing, controlling, and

72

www.manaraa.com

implementing branch patterns. We can define iterations for each pattern. Users who know

L-systems can also define their own branch types easily. The hemisphere controls distribution

probabilities for branches and leaves, so we can control tree shapes with a proper randomness.

Different growth levels of the tree provide corresponding parameters for both branches and

leaves. The dynamical bounding box constrains the local growth area and detects outer

growth barriers. In a tree model, both local and global characteristics of a tree are considered.

Randomly selected L-systems branches control the local shape for every branch. However, we

use the probability hemisphere to control the global shape of a tree.

These four parts work together to produce many tree shapes with efficiency and

a natural look. Distribution probabilities for branches and leaves are designated by the

hemisphere. This process enables simulations referred to as probability distributions, such as

the photokinesis simulation. The bounding box controls local tree shape by detecting outer

factors and enables blocked growth. The growth level manages different growth stages for

the tree model to decide growth parameters for branches and leaves.

5.3.1 Branch Library on L-systems

L-systems define different branch shapes in our research. Constructing branch shapes is a

key problem in simulating 3D trees. Different L-systems algorithms result in different branch

patterns. For each branch pattern, we define its rules, angle, and number of iterations. In

Figure 5.1, we define a branch pattern using a one-iteration L-system (5.1a) and show the

corresponding branch shape (5.1b):

After giving an L-system for each branch pattern, we use an OpenGL library to draw

the corresponding branch. Each fragment (see lines in Figure 5.1b) of a branch is described

by a 3D cylinder. We then apply an angle at the joints to rotate these cylinders. Then we

get a 3D branch based on L-systems algorithms. All 3D branches in the branch library have

the same length and radius for every twig. When applying a branch to a tree model, we

compute the length and radius by parameters from the growth point.

73

www.manaraa.com

(a) L-systems algorithms. (b) The corresponding branch.

Figure 5.1: Tree structure under L-systems.

Figure 5.2: Side view of a 3D tree model and hemisphere.

5.3.2 Hemisphere for Probabilities Distribution

A hemisphere controls the distribution of branches and leaves. We define it by a position, a

radius, and a probability distribution. The position of this hemisphere is on the top area of

a tree model. Its diameter is set by users for different purposes. For example, simulating

photokinesis requires the hemisphere to be big enough to include the track of sun movement.

The probability distribution divides the hemisphere into several parts and assigns probabilities

of particle generation to each part.

74

www.manaraa.com

Figure 5.3: An example of the probability distribution of a hemisphere (up view).

In Figure 5.2, we show the definition of a hemisphere. The size of the hemisphere is

bigger than the tree crown. The position is right next to the tree model and the center of the

hemisphere is perpendicular to the top of the trunk.

In Figure 5.3, we show an example of hemisphere division and a probability distribution.

We cut the hemisphere into several parts. Each part has a specific probability of generating

particles. These probabilities control the shape of the 3D tree model.

The functions of the hemisphere have three parts: arranging probabilities for generating

particles, defining directions for particles, and setting initial positions for particles. As in

Figure 5.3, these probabilities decide how particles generate in different parts. In this example,

particles are mainly generated in the shaded areas. If the shaded area is the track of the

sun’s movement, branches in a tree mainly grow towards these areas. When generating a

particle on the hemisphere, we first decide the initial position of this particle according to

the probability of its region. We then give an initial direction for this particle to move in the

3D scene.

After initializing a particle and its movement in the scene, we define a landing

constraint for the particle. The constraint is defined by the user. For example, we can use

the nearest Cartesian distance as the constraint. The distance is from the particle’s position

on the hemisphere to branch top points.

75

www.manaraa.com

After using the landing constraint to define the landing point on existing tree branches,

we select a branch pattern from the L-systems branch library. Using the growth parameters

of the landing point, we are able to attach the new branch to the existing tree.

5.3.3 Bounding Box for Local Growth Control

A bounding box defines the minimal 3D rectangular volume around the existing tree model.

The bounding box computes the current growth space. When the tree model grows larger,

the size of the bounding box grows simultaneously. Therefore, the bounding box can detect

whether there are intersections between the bounding box of the tree and other objects.

For example, after adding a new branch, if the tree’s bounding box intersects with a rock’s

bounding box, we can delete this branch and generate the next branch.

The bounding box is an approximate method for defining the tree’s growth area. In

fact, the most exact way is to calculate all points on the tree body. However, this approach is

very expensive and not necessary. In contrast, using a bounding box we only need to calculate

for two points and detect the growth area approximately. Since a tree has many branches,

such approximation highly reduces computations while properly detecting outer barriers.

5.3.4 Growth Level Controls

We introduce the level of growth to control the growth of branches and leaves. In Figure 4,

the tree model has three growth levels. Figure 5 shows the corresponding tree model for the

growth levels in Figure 4. Because natural trees grow new branches every year, the leaf sizes

and colors change according to branch ages and different parts of trees. For example, the

color of younger branches and leaves is light green while older ones are dark green or brown.

The growth level parameter tracks the age of branches and is used to define leaf and bark

appearance. When we add new branches or leaves, the age parameter indicates the right

colors, sizes, and other parameters for them.

76

www.manaraa.com

Figure 5.4: Growth level 1, growth level 2, and growth level 3 in a tree model.

Figure 5.5: A tree model with three growth levels.

Growth levels set different particle generations. In Figure 5.4, the first generation of

particles is the trunk, the oldest part in a tree, having a growth number 1. Then the second

generation, branches growing on trunks, has a growth number 2. After adding growth level 3,

we get a tree model as shown in Figure 5.5.

Leaves grown in these parts should have darker colors and bigger sizes than those

on top, which has a higher growth number. Therefore, different growth levels can simulate

different ages of branches and work as a reference for leaves.

77

www.manaraa.com

5.3.5 Tree Generation Steps

Based on the discussed four parts—L-systems, a hemisphere, a dynamical bounding box, and

growth level controls—we can generate a 3D tree model. There are three main steps in this

process: (1) define the hemisphere and the branch library, (2) generate particles and control

their movements, and (3) distribute the particles in a tree model. We discuss these steps

below.

(1) Define a hemisphere and a branch library.

We define the hemisphere’s initial position, size, and probability distribution. The

position and size is decided by the scene and the tree size while the center of the hemisphere is

identical to the top of the trunk. The probability distribution is defined by users for different

purposes. This distribution also reflects the projection of 3D branches on the hemisphere.

Therefore, the probability distribution can control the shape of the tree.

As for the branch library based on L-systems, we define different L-systems algorithms

and get different patterns of branch shapes.

(2) Generate particles and control their movements.

We generate a certain number of particles for a growth level at the same time. For

example, 10 particles for growth level 2. Then we select proper positions for these particles

on the tree.

A particle denotes a branch selected from the branch library. The particle is generated

on the surface of the hemisphere according to the probability distribution. With an initial

position on the hemisphere and an initial orientation, the particle moves in a Brownian way

in the scene.

(3) Distribute the particles in a tree model.

During the Brownian movement, the particle compares and finds a nearest distance

among all growth points. Then the branch denoted by this particle is attached to this nearest

growth point. After the particle settles, we calculate a new bounding box to replace the old

one for this tree. However, there is one exception. After attaching the new branch to the

78

www.manaraa.com

Figure 5.6: A result for photokinesis simulation.

existing tree model, if the new bounding box overlaps some outer blocks, the particle with

this branch is cancelled and we then go to the next particle generation.

After one particle is generated and distributed in a tree model, we repeat step (2) and

step (3) until we reach a user-defined numbers of particles.

5.3.6 Examples of 3D Tree Modeling

Based on this new method with L-systems, we can add more constraints to this model

to simulate some properties of natural trees. Here we introduce implementations of trees’

photokinesis simulations and of growth control over blocks.

Trees’ Photokinesis Simulations

The photokinesis simulation relies on the probability distribution on the hemisphere. This

simulation is used to make the tree branches grow towards the sun. In order to give more

weight to the lighting area, we add more probability of generating tree branches in the track

of sun movement. Then the hemisphere works as the sky and the probability distribution is

assigned by the sun’s track. Figure 5.6 shows one result of photokinesis simulation.

79

www.manaraa.com

Growth Control Over Blocks

We control the growth over blocks by using the dynamic bounding box. When simulating 3D

tree growth over blocks, the tree should avoid growing in the blocked area. We use bounding

boxes to control blocks, such as outer buildings or rocks. First, we calculate bounding boxes

of the blocks. During steps to distribute branches, when a tree’s bounding box goes into

the bounding boxes of blocks, the current particle is deleted. Thus we can eliminate tree

branches grown in the blocked areas.

Trees’ Fruits Simulation

We can add fruits on a tree using this method. The process of fruits simulation is similar

to the leaf attachment. We define the size, shape, and color for fruits. Then we generate

particles on the probability hemisphere and distribute the fruits to different growth levels

according to the tree model.

5.4 Results

This new method works well and has some advantages. This model controls the local shape

of branches using L-systems and the global shape of trees using the probability hemisphere.

Different growth levels approximately simulate the growth process. The bounding box detects

outer obstacles. We analyze these characters in detail below.

5.4.1 Growth Probability Control by Hemisphere

This method introduces a hemisphere control over tree growth by distributing particle

probabilities. The tree shape is decided by the predefined probabilities on the surface of this

hemisphere. As we use a particle system to control the distributions of branches, the particles’

initial sizes and orientations are defined on this hemisphere. Thus, the main shape of a tree is

decided and we can use different types of branch patterns to generate the details. Figure 5.7

80

www.manaraa.com

Figure 5.7: (a) Branches towards the same direction; (b) branches clustered together for one
direction.

shows two types of hemisphere control on tree shape. In Figure 5.7(a), all branches are grown

towards the same direction. In Figure 5.7(b), there is only one priority growth direction.

5.4.2 Growth Level Controls

We introduce a new conception of growth level controls. In this control, we give different

growth levels for different branches, leaves, and even fruits with different ages. Branches,

leaves, and fruits with the same growth level can share some parameters, such as sizes, colors,

and shapes. In Figure 5.8, we show two results for the growth level work. In Figure 5.8(a),

this tree model has needle-shaped leaves and heart-shaped leaves. It also has small red flowers

on the top level. In Figure 5.8(b), we add some fruits to this tree model.

5.4.3 Growth Control over Small Components

This new method has advantages in controlling small components in a tree. Compared to the

DLA (Diffusion-Limited Aggregation) method [15, 59] for tree modeling, our method reduces

computing work by reducing the particles. Using a branch type as a particle rather than

81

www.manaraa.com

Figure 5.8: (a) A 3D tree model with different leaf shapes and flowers; (b) A 3D tree model
with fruits.

assigning a DLA particle for every twig, fewer particles are needed for the same number of

twigs in a tree. Since computation for each DLA particle is the same, fewer DLA particles

requires less computation. In Figure 5.9, we have the same tree shape. If we use traditional

DLA in Figure 5.9a, the circled branch needs three particles to calculate. But in Figure 5.9b,

we calculate one DLA particle for three twigs in one branch unit.

5.4.4 Growth Control for Leaves

Our method provides a new method of leaf simulation, which is difficult for most current

methods. Leaf simulation is difficult to achieve by L-systems because L-systems can’t control

the positions of leaves randomly on branches. Even the popular image-based approaches

have difficulties handling leaf simulation. These approaches usually generate branches very

well. However, after branch construction, leaves are added randomly and often can’t attach

to the branches. Our method uses the hemisphere to handle the overall distribution of leaves

in a tree, and we apply growth level controls to define leaves with different shapes, sizes, and

colors according to the branch properties to which they attach.

This approach is also effective. We only need to change leaf parameters according to

the numbers of total growth levels. At a certain growth level, we define the shapes, sizes,

and colors for leaves in that level. As for the whole tree, branches have leaves of the same

82

www.manaraa.com

(a) DLA particles.

(b) Particles in our method.

Figure 5.9: Particles with tree shape.

age. In the natural world, that means the old branches have old and big leaves while young

branches have young and small leaves in the same shapes.

5.4.5 Growth Control by Bounding Box

Using dynamic bounding boxes in detecting proper positions for DLA particles gives flexible

controls over 3D tree models. We generate the DLA particle in the bounding box and find a

position in this bounding box. By controlling this bounding box, we can control the growth

of the tree. For example, if the current bounding box overlaps a building’s bounding box, the

current DLA particle should be canceled.

Figure 5.10 shows an example of tree growth. In this example, the 3D tree model tries

to avoid the white box to grow. This process is similar to the process of a tree growing to

avoid outer barriers such as bridges or buildings.

83

www.manaraa.com

Figure 5.10: Trees grow to avoid the white outer box viewed from two different directions.

Figure 5.11: (a) Combination method tree; (b) traditional L-systems tree.

5.4.6 Randomness

Compared to traditional L-systems, our method generates tree models with more random

shapes. Every branch unit carries an L-system algorithm. Because particles control every

branch unit, the whole tree doesn’t follow any L-systems algorithms. This approach solves

artificial iterations from single pure L-system algorithms. In Figure 5.11, (a) is a tree model

from the combination method and (b) is from a traditional L-systems algorithm. Figure

5.11(a) has a random look while (b) has a self-similar character that makes the tree model

artificial.

84

www.manaraa.com

Figure 5.12: (a) Combination method tree; (b) traditional DLA tree.

Randomness from the DLA method goes too far for tree modeling. As shown in

Figure 5.12, the shape from (b) might be more curved than is common in trees. Using the

combination method, we can reduce the curvature by reducing the number of particles, which

stand for L-systems branch units rather than twigs.

5.5 Conclusions and Discussions

We introduce a new method based on L-systems for 3D tree models. In this method, a

hemisphere controls probability distributions for branches, leaves, and fruits; growth level

controls the distributions for different ages of branches; and a bounding box detects the outer

collisions. This new method employs a moving particle for a branch unit, which reduces

computation costs of traditional methods like DLA. The hemisphere controls the probability

distributions to simulate some natural properties of trees or some special effects. The growth

level can manage the internal growth in a tree through age controls. In the tree construction

process, the bounding provides an easy and efficient way to control tree growth. Therefore,

we can manage the main shapes using the hemisphere while controlling the internal growth

85

www.manaraa.com

through growth level controls. Under these controls, randomness is added by randomly

selected tree branches from the L-systems branch library.

The future work in this research may focus on adding more controls over particle

movements. We can try to find some more efficient approaches for distributing L-systems

branch units. We can also simulate tree animations using this model. Furthermore, we can

apply forestry equations to make tree models follow real growth rules.

5.6 Practical Application Plan

In this paper, we present an innovative method on 3D tree modeling. Tree modeling is a hot

research topic in both forestry and computer graphics. This new method with L-systems

can produce a user-defined or random 3D tree model. With this tree modeling method, we

can control every part in a 3D tree model, including trunks, branches, leaves, flowers, and

fruits. For these parts, we can change colors, textures, and shapes very flexibly. The second

advantage is about the level control. Based on this control, parts in a tree with different

ages look different. The third advantage is the possibility of hemi-sphere control. This is a

new method for controlling the shape of a tree by controlling the probable distribution of

particles on this hemisphere. Because of the advantages of this new method, it might have

three effects: social, political, and economic, which are discussed below.

However, since this new method is currently a basic idea, further work focused on

different application areas is need to achieve these goals.

5.6.1 Social Effects

There are two main aspects of this new 3D tree modeling method that have social effects.

One is the innovation of this method. Another is the use of this 3D tree model in our society.

The innovation of this method provides a new method for 3D tree generating. It can

help researchers to understand tree modeling and even find better solutions. This new method

takes advantage of traditional L-systems and solves the problems with L-systems. We also

86

www.manaraa.com

introduce a new approach using hemisphere and level control. What’s more, the bounding

box technique can also be applied to this 3D tree model for detecting outer collisions of

growth.

This new method can also be used in less technical communities. Based on our idea,

we can produce more types of trees and control all parts in a tree. If this method can be

applied to work as a demo in some community or school, it helps more people to know how

trees grow in a computer. Furthermore, if more biological characters are added, forestry

researchers can use this model to predicate the growth of trees and then evaluate the wood

productions. However, in addition to our tree model, more work is needed to do to achieve

these social effects.

5.6.2 Political Effects

This model has little effect on politics. However, we suggest this tool for governing trees in a

forestry department. At present, most forestry departments use a database or even paper

to record and manage trees. With our 3D tree model, we can display these data in visual

3D and thus get more direct information from these data. Therefore, our new method, if

there are any political effects, can help forestry departments and researchers to get more

information from tree data and help to make some decisions.

5.6.3 Economic Effects

One reason for the interest in 3D trees is the wide applicability and economic value. As a

product of this simulating tool, the automatic generated tree model can reduce manual work

and achieve a good simulating result. Our 3D tree model can be used in commercial 3D

games, commercial software of tree models, city planning, and so on.

In commercial 3D games, our tree model can set up a good scene or background. If

further work can be done, we will try to improve the efficiency of the current model to make

it more applicable.

87

www.manaraa.com

In commercial software, the method for generating a 3D tree shape is important.

Current 3D tree modeling software, such as XFrog, has a great market. Our method suggests

a new method of 3D tree modeling and is easy to control. Since this model can also be used

in 3D tree modeling software, the method has potential economic value in software design.

In city planning, we can use different shapes of 3D tree models to view corresponding

designs. For example, when we choose a type of tree for use on a street, we can generate

different 3D tree shapes to make comparisons.

88

www.manaraa.com

Chapter 6

Animating Trees Using Wind Fields Estimated from Motion Capture Data

Jie Long and Michael Jones. Estimating wind flow from tree motion using motion capture

data.

Abstract

We present non-rigid motion capture by extracting external forces from motion capture data

and then replaying those forces to create animation. We explore this idea in the context of

motion capture of natural trees in wind. Motion of a tree in wind is decomposed into three

forces: wind-induced drag, branch elasticity, and damping by the leaves. Given a model of

elasticity and damping, the drag force can be isolated and used to estimate wind velocity.

The extracted velocity field is extended to a larger volume and enriched with a turbulence

model. That wind field can be replayed on a tree model that includes elastic and damping

properties to create similar motion.

89

www.manaraa.com

(a) Motion capture setup. (b) Extracted wind field. (c) Branch motion paths.

Figure 6.1: Wind flow can be estimated from motion capture data and used to recreate
similar tree motion.

6.1 Introduction

We address the problem of extracting a spatially varying wind velocity field from partial

motion captured data and simulating networks of flexible tree branches embedded in a

turbulent flow described by this wind field. This problem is a specific instance in which

capturing motion and directly replaying it is difficult. Directly replaying motion capture

data is difficult in other settings, such as swimming and rope motion capture, as well. The

problem of replaying tree motion in wind is important for animators and game developers.

Tree motion can be an important background element in outdoor settings.

Animation of trees in wind has been discussed for many years [1, 52, 56]. In most

of the previous research, the wind field is created using noise and fluid simulation. Motion

capture avoids the directability and computation problems of simulated wind fields but may

yield data that validates simulation-based models.

Motion capture of non-rigid bodies is difficult. Prior work has focused mostly on cloth

and facial motion capture [18, 24, 26, 54]. In these methods, the focus is on overcoming

difficulties associated with reconstructing the motion of a deforming plane. We focus on the

motion of a deforming network of rods. Rather than directly reconstructing the motion of

the deforming object, we reconstruct the forces that create the motion. The forces can then

be extended and enhanced to recreate similar motion.

90

www.manaraa.com

We solve the problem of extracting a wind field from motion capture data by separating

the forces acting on a tree and isolating the force due to wind. There are three primary forces

that create tree branch motion: elasticity, damping, and drag. Elasticity and damping can be

estimated directly from position and velocity information computed from marker positions.

Elastic and damping forces are subtracted from total force to obtain drag. Given drag, we

can solve for wind velocity using the aerodynamic drag equation. All of these steps depend on

estimates for elasticity, damping, mass, and drag coefficients. These coefficients are estimated

from the forestry and graphics literature and can be adjusted to create different motion effects.

The extracted wind field has low spatial resolution due to the distances between markers.

A sub-grid scale turbulence model with higher resolution restores motion due to omitted

high-frequency small-scale turbulence. We use a classical turbulence model composed of a

mean flow velocity and turbulence velocity. The mean flow velocity is computed from motion

capture data while the turbulence velocity is created using a tke model [37, 39, 51]. The tke

turbulence model trains the mean velocity field and modulates tuned noises. By integrating

these tuned noises into the wind field, we can restore branches’ high-frequency motion while

preserving the coherence of branch movements on a tree from large-scale turbulence and

small-scale turbulence.

The process is illustrated in Figure 6.1. A tree is instrumented with small retroreflective

markers, placed in a passive optical motion capture arena, and subjected to wind. A wind

field is extracted, as shown in the middle image. The wind field is applied to a tree model

and the resulting motion paths of branch tips are shown in the right-most image.

Our primary contribution is creating complete tree motion from partial motion data

collected from motion capture. We discuss methods for sampling and extracting the external

force on tree branches as well as energy transformation between tree and wind.

91

www.manaraa.com

6.2 Related Work

Our work is most closely related to prior work in motion capture of flexible objects and in

animating trees. In contrast with prior work in motion capture, we focus on flexible rods

rather than flexible planes and on extracting external forces rather than directly extracting

motion. In contrast with prior work in animating trees, we estimate a wind field from motion

capture data rather than simulating the wind field using noise or approximating it using fluid

simulation.

Motion capture has been widely used in simulating human motion [18, 25, 44, 62].

Prior work in motion capture of flexible objects focuses on reconstructing a mesh, which

deforms to match a moving surface. Ma et al. [26] train a polynomial displacement map and

apply this map to create high-resolution facial expressions, including muscle deformation,

wrinkles, and skin pores. Lorenzo et al. [24] build a surface-oriented deformation paradigm to

animate facial expressions with user intervention. Sifakis et al. [54] combine motion capture

data with an anatomical model to produce a model of facial musculature, passive tissue, and

the underlying skeletal structure. A key difference between natural trees and facial motion

capture is that the drag forces that create natural tree motion in wind may be simpler to

extract from motion than the muscular forces involved in facial motion. In this paper, instead

of continuously reconstructing a surface, as one does with faces or cloth, we animate trees

that have open structures and more degrees of freedom. Also, not only do we create tree

motion, but we also simulate wind dynamics, which are scalable.

Recent work extracts forces rather than motion. Kwatra et al. [18] simulate human

swimming and interaction with water by combining motion capture data and fluid dynamics.

Motion capture records swimming motion with an articulated rigid skeleton model. The forces

at joints are computed. By combining the forces with fluid dynamics, this method creates

human swimming motion as well as water movement. Our research computes wind forces

from motion capture data. Compared to Kwatra et al. [18], this would be like capturing the

92

www.manaraa.com

motion of a swimmer in water in order to capture the fluid dynamics around the swimmer. A

key difference in our model is that we have assumed that the tree does not initiate motion.

Sun et al. [57] propose a method to extract motion patterns from video sequences and

reapply these patterns to simulate computer-generated objects. The research focuses on the

schema of video input driven animation (VIDA). Motion information is analyzed from 2D

video and then incorporated to a conceptual model, such as wind or water dynamics. Our

research follows a similar process to the schema. Instead of capturing 2D video, our motion

capture system provides more accurate motion information in 3D space. Our research also

calculates the interactive energy between trees and wind using particle flow in both space and

time domains. By introducing a turbulence model, our tree motion provides more flexibility

of simulation control and creates plausible natural tree sway in wind.

Approaches for simulating tree motion in wind with either one- or two-way coupling

in a fluid simulation are based on the Navier-Stokes equations. Akagi [1] takes this approach

but uses a coarse simulation grid, which omits significant high-frequency fluid turbulence.

The more common approach is to approximate wind dynamics with a frequency-tuned

noise model. Ota et al. [32] apply an experimental noise model of 1/fβ to simulate the

motion of branches and leaves. Shinya and Fournier [52] present a motion model based on a

stochastic process and physical dynamics. They use a power spectrum and autocorrelation of

wind to generate a spatiotemporal wind velocity field similar to that created when wind flows

through trees. Habel [11] builds a 2D-motion, rather than velocity, texture by combining a

Gaussian field with a frequency-tuned 2D velocity field based on a wind dynamics equation

with a harmonic oscillator model. The motion texture synthesizes branch motion directly

without an integration step. This runs in real time for three moderately complex trees. Stam

[56] creates filters for white noise and generates wind fields from samplings. He defines and

applies the filtering rules in the frequency domain. The noise model with physical dynamics

provides control flexibility and works to create motion for complicated large-scale scenes [67].

In our research, wind field calculation is driven by branch movements recorded from motion

93

www.manaraa.com

capture. A turbulence model preserves local wind dynamics using particle flow. Using a

smooth window, our approach also avoids the complicated time integration of the dynamic

system.

Models for simulating large deformation in networks of flexible rods can be applied to

animation of trees in wind. Barbic and Zhao [3] present a scalable method for simulating

both internal and external forces that can be applied to trees. If combined with a model of

external forces due to wind, this may result in convincing methods for animating trees in

wind.

Tree motion can also be simulated using data from video or motion capture. Diener [8]

records 2D video and extracts features for a single plant. By analyzing the video with these

features using hierarchical retargeting algorithms, the 2D motion is projected into 3D space

and animates a large class of virtual shrubs. Long et al. [23] reconstruct 3D tree motion in

wind using motion capture. Reflective sensor markers are placed along branches. Leaves have

to be sparse to ensure the visibility of all markers exposed to capture motion. This approach

produces visually realistic movements of a cherry tree in wind. However, this method can

only create motion of the original tree and is not scalable to other models. In our research,

wind field information is trained from motion capture data. Using particle flows for local

wind energy transfer, we are able to simulate the motion of multiple objects in a scene. In

addition, reflective markers are placed on the tree crown instead of along a single branch.

This design maximizes the visibility of markers to motion capture and records more accurate

movement data. It also facilitates the computation with the dynamic model of wind and tree.

6.3 Methods

We estimate a wind field from tree motion using motion capture data. Natural tree motion

is captured using passive optical motion capture. The data are analyzed to estimate both

a 3D model of the tree geometry and a wind field. The estimated wind field approximates

the wind that created the motion recorded in the motion capture data. A fluid simulation

94

www.manaraa.com

enriched with a synthetic turbulence model transfers energy between wind and tree. The

enriched fluid simulation drives animation of a tree model.

Our work can be divided into three parts: motion capture, tree modeling, and wind–

tree interaction. We describe each part in the following sections. Of those three parts,

wind–tree interaction presents the most difficult and interesting problems.

6.3.1 Motion Capture

As in [23], twelve optical motion capture cameras are placed in a circle around a tree indoors.

A fan with varying speed and direction creates tree movement. The cameras record the

motion of markers placed on exterior branch tips. Placing markers on branch tips avoids

problems with occlusion. Typically we use about 30–70 markers, depending on the size and

shape of the tree. Markers are distributed evenly to cover the crown shape.

Optical motion capture records unindexed locations of all the reflective markers in a

scene. The recorded data can be processed to label unindexed locations and to eliminate

swaps and repair gaps. The algorithm uses forward differences to predict the future position

of a point and then minimize the distance between the predicted and the recorded points

to add a new position to an existing trace. Details can be found in [23]. At the end of the

process, collected marker positions are clustered into paths for each marker.

6.3.2 Tree Modeling

Particle flow can generate 3D branching structures [29, 50, 58]. In most cases, this approach

depends on inverse volumetric rendering to identify the position of tree mass. The tree mass

is then filled with a branching structure using either particle flow or pre-built libraries of

small branching structures. Motion capture data simplify the process because explicit image

segmentation and camera calibration are not needed, as they are part of the motion capture

process.

95

www.manaraa.com

Figure 6.2: A particle with its nearest trunk point and its crown root point.

Particle systems generate the branching structure. In our process, particles are

generated at the 3D positions recorded for the branch tips on which reflective markers were

placed. We generate additional particles distributed evenly on the periphery of the region

bounded by the tree crown. Each of these particles also represents a branch tip.

The particles flow toward a predefined trunk placed vertically in the center of the

crown shape. Branch shapes and hierarchies are defined when particle paths connect. Particle

flow starts at branch tips and ends at the trunk. Each particle has a direction, a step length,

and a threshold for merging. As in [29], the particle direction combines the direction to the

crown root point and to the nearest trunk point, shown in Figure 6.2. The red dots in the

image indicate locations of branch tips. The crown root point is the lowest point on the

trunk near the bounding box of tree crown. The nearest trunk point is on the trunk that

has the shortest distance toward a particle. Particles flow from branch tip toward the trunk,

which is unlike the particle system in [34], where particles flow from trunk to branch tip. The

direction of the first step in the flow is the combination of direction to the nearest trunk point

and the crown root point. In the following steps, the flow direction is also a combination of

these two directions, but any two particles are merged if their distance is under the threshold

of merging distance.

96

www.manaraa.com

6.3.3 Wind–tree Interaction

Wind–tree interaction is based on a mixed Lagrangian/Eulerian model of the wind field

extracted from motion capture data enriched with a subgrid turbulence model. The Eulerian

grid stores wind velocities as estimated from motion capture data. Lagrangian particles carry

velocity and turbulent kinetic energy tke from frame to frame. The velocity grid is replaced

every frame while the fluid particles retain state from frame to frame. Fluid particles carry

energy back and forth between the global wind field, the local turbulence model, and the tree.

In this way we simulate tree movement as well as the distribution of energy in a dynamic

wind velocity field.

Proxy geometry is used to detect and approximate the effects of collisions between

fluid particles and tree geometry. Both the effect of wind on trees and the effect of the tree

on wind are calculated.

Because the global velocity field is generated from motion capture data, which may

contain noise, this field may not be continuous in the time domain. Averaging velocity values

for a single grid across several adjacent frames smoothes these variations but also smoothes

small-scale turbulence effects. In order to compensate for lost turbulence effects as well as to

better preserve wind continuity over time, particles store tke across frames and manipulate

the scale of turbulence due to characteristics of tree and wind.

Wind Velocity Field

The global grid-based velocity field is the source of wind energy in the scene. Wind force is

estimated directly from recorded displacements of branch tips. We solve for wind velocity at

branch tips using drag equations and the estimated wind force. This gives a sparse collection

of velocity estimates. Interpolation and extrapolation build a grid of velocity values from

the sparse collection. Figure 6.3 shows an orthographic projection of such a field. The green

dots indicate marker positions, the red arrows represent extracted wind velocities, and the

blue arrows represent velocities interpolated or extrapolated from the estimated velocities.

97

www.manaraa.com

Figure 6.3: Vector field of wind velocities with estimated and interpolated values. Wind
velocity estimates based on recorded tree motion are shown in red with interpolated velocities
in blue.

The wind field in Figure 6.3 is quite smooth. This is because small-scale turbulent eddies

are below the spatial sampling resolution of the motion capture data. A subgrid turbulence

model based on tke recreates small eddies in the velocity field.

We isolate the drag force in order to estimate the wind velocity. Assuming no external

forces other than wind influence the tree motion, the motion of a branch is caused by

aerodynamic drag and internal elasticity and damping forces. Elastic forces tend to restore

the branch to a resting position and damping forces reduce velocity. In this model, the forces

acting on a tree are given by

F = Fwind + Felastic + Fdamping = Fwind + cṡ+ ks. (6.1)

Differences between marker positions in successive frames give estimates for position s,

velocity ṡ and acceleration s̈. All the derivatives are approximated with the marker positions

using backward differencing. The displacement s, velocity ṡ and acceleration s̈ are calculated

as

st = qt − qt−1, ṡt = (st − st−1)/2.0, s̈t = (ṡt − ṡt−1)/2.0, (6.2)

where qt is a marker position at time t. The elastic force Felastic is the product of branch

elasticity and displacement from the rest position. Similarly, the damping force is the product

98

www.manaraa.com

of the damping coefficient and the velocity. We estimate damping c and spring coefficients

k from biomechanical parameters. Since F = ms̈, we substitute ms̈ for F , make similar

substitutions for the elastic and damping forces, and then solve for Fwind to obtain

Fwind = ms̈− cṡ− ks. (6.3)

The drag equation gives the force created by wind as a function of the wind velocity

V (and other constant parameters explained below):

Fwind = 0.5ρ(V 2)ACD, (6.4)

where ρ is air density, V is wind velocity relative to branch movement, A is the aerodynamic

cross section, and CD is the drag coefficient.

Substituting the value of Fwind calculated using equation (6.3) into equation (6.4) and

solving for V 2 gives

V =
Fwind
‖Fwind‖

∗

√√√√∣∣∣∣∣ms̈− cṡ− ks0.5ρACD

∣∣∣∣∣. (6.5)

The solution is based on the assumption that the acceleration is constant and therefore

the direction of velocity V and force Fwind is preserved as the same in a short period of time.

In our case, the time interval is 0.01 sec from motion capture setup. The direction of the

velocity V is computed using the unit normal vector of Fwind as shown in equation (6.5). The

displacement s, velocity ṡ and acceleration s̈ are computed using equation (6.2) from the

marker locations.

The equation (6.5) calculates a wind velocity estimate in each frame at the location of

each branch tip. Motion capture markers are distributed evenly through the crown in order

to sample the global wind field over a large area.

Interpolating and extrapolating velocity values over the entire motion capture volume

results in a grid-based velocity field. The size of a grid cell is set to be close to the average

99

www.manaraa.com

distance traversed by a single marked branch. By doing this, we can optimize the usage of

motion capture data during the interpolating and extrapolating process. In each frame, the

ideal case is that each grid cell contains exactly one motion-captured point. In our case, the

grid resolution is 10 ∗ 10 ∗ 10. We use linear interpolation to fill the grid from sampled values

because linear interpolation is simple. More sophisticated methods, such as Kriging (as in

[10]) or distance-weighted kernel-based methods, could also be used.

The grid-based wind velocity field is computed from each individual frame of branch

tip data. However, the wind velocity field does not vary smoothly from frame to frame

because there are gaps and jumps in the data. To improve temporal continuity, velocity

values over the neighboring 5 frames are averaged.

Turbulent motion below the sampling scale of the motion capture data cannot be

captured by this model. In space, we are only able to extract turbulent effects that are large

enough to influence the motion of two adjacent markers. Because leaves have small mass and

large surface area, small-scale turbulence results in visually significant motion on tree crowns.

That turbulence is well below the sampling limit of the data. The mean flow inferred from

motion capture data will be enriched with a turbulence model at a finer resolution.

Rather than apply the velocity field directly to the tree, we introduce particles into

the field and collide particles with proxy spheres attached to the tree. These particles have

zero mass and do not affect the mean flow. This scheme simplifies calculation of wind–tree

interaction by replacing cell–tree collisions with point–sphere collisions. Cell–tree collisions

can be expensive for determining what fraction of a cell contains a fraction of a generalized

cylinder representing the tree branch. With particles and proxy geometry, estimating wind

velocity can be reduced to a distance-weighted average of the particles contained in a sphere.

Wind Effects on a Tree

Simulating wind effects on a tree creates branch motion. The simulation is the key to creating

natural tree motion. We have discussed creating a grid-based wind velocity field using

100

www.manaraa.com

motion capture data. Because of motion capture’s capability to record a limited number of

markers, the resolution of the gird is low. The low resolution simulates big-scale turbulence

but lacks small-scale turbulence information due to a high-frequency wind field. Selino and

Jones [51] solve this problem by introducing the small-scale turbulence, which is computed

from large-scale turbulence. This solution fits into our problem very well. In our case, the

low resolution of the wind velocity field produces large-scale turbulence. The large-scale

turbulence will be tuned by a tke model to create small-scale turbulence. The combination

produces wind effects, including both large- and small-scale turbulence, on a tree.

The simulation of wind effects on a tree preserves coherence of velocity from several

perspectives. The mean flow velocity computed from interpolating motion capture data

contains information of tree movements as a whole. The tke model keeps track of turbulence

changes in the flow and thus tunes the noise value due to these changes. The Gaussian noise

field is filtered in the frequency domain to match the frequency of turbulence observed in tree

crowns. The model is derived from a classical turbulence model and generates turbulence

effects, including both large scale and small scale.

Our approach is different from Selino’s work because of the source of large-scale

turbulence. Instead of a real-time fluid simulation, we generate the large-scale turbulence

offline from motion capture. In Figure 6.4, we demonstrate our turbulence model to generate

tree motion. The turbulence is computed in two parts as in large scale and small scale. The

large-scale turbulence is created from the grid-based wind velocity field. The small scale is

generated from the tke model. After solving the turbulence velocity, we apply a drag equation

as shown in equation (6.4) to solve for the tree motion represented by branch displacements.

The turbulence velocity V (t) applied to a branch segment is computed as in equation

(6.6):

V (t) = v(t) + α
√
k(t)N(t), (6.6)

101

www.manaraa.com

Figure 6.4: Turbulence simulation to create branch motion.

where v(t) is the mean flow velocity for the large-scale turbulence at time t, α is a tunable

weight parameter, k(t) is from tke model, and N(t) is a sampled value from a frequency-tuned

time-varying noise field.

In the simulation, each fluid particle carries a mean flow velocity from the global wind

velocity field and a tke estimate from the turbulence model. The value k(t) of the tke is

estimated using a two-equation tke budget based on strain in the velocity field as shown in

equation (6.7) and (6.8). The tke model is adapted from Selino [51] and Pfaff et al. [37], and

is based on Pope [39]. The value k(t) represents turbulent kinetic energy and is generated

when the strain in the mean flow velocity is not zero. The decay term ε models dissipation

rate of that turbulence energy. When the turbulence production P exists due to strain, the k

and ε are computed as follows:

∂k

∂t
= P − ε, ∂ε

∂t
= Cε1

Pε

k
− Cε2

ε2

k
, (6.7)

where P is the production of turbulence, t is current time step, and model constants are ε1

= 1.44 and ε2 = 1.92. When the production P of turbulence in the fluid becomes zero, the

values of k and ε dissipate and compute as in the equation (6.8):

k(t) = k0

(
t

t0

)−n
, ε(t) = ε0

(
t

t0

)−(n+1)

, (6.8)

102

www.manaraa.com

Figure 6.5: Energy flow in a wind velocity field.

where t is current time step, n is a constant decay component computed by 1
Cε2−1

, k0 and ε0

are the most current values, respectively, in the past when there exists turbulence production

P , and the reference time t0 is computed as nk0
ε0

.

Based on equation (6.7) and (6.8), we compute for the value of k(t) in equation (6.6).

The noise N(t) is sampled from a continuous noise field. That noise field is tuned to

match the frequency distribution of turbulent flow through trees given in Simiu [55].

The mean flow velocity v(t) is sampled using a distance-weighted average of particles’

velocity contained within the proxy sphere of a branch tip. Proxy geometry is defined for

each branch segment using 3D spheres with radii proportional to branch segment length and

diameter as suggested from Selino and Jones [51].

Figure 6.5 shows the energy flow during the simulation. Wind energy is transferred

from the grid-based velocity field to particles. The turbulence model calculates tke from the

transferred wind energy. When particles pass through proxy geometry, velocity is converted

to a drag force using equation (6.4) and branch motion is created.

Tree Effects on Wind

Tree effects on wind are split into local and global effects. Local effects happen at the scale of

a few leaves and branch segments. Global effects happen at the scale of the entire tree. Local

effects are simulated using a simple damping model on wind particles, and global effects are

recorded during motion capture. Simulating local effects allows for variations in wind flow

103

www.manaraa.com

due to differences between the shape and dynamics of the animated tree compared to the

shape and dynamics of the actual tree used in motion capture.

Tree effects on wind on the local scale are calculated as a damping force for particles

within the proxy geometry representation of tree mass. Consider the velocity vi(t) of particle

i in frame t sampled before calculating branch movement. Suppose that particle i lies in

proxy geometry for some branch in frame t. After displacement of the branch tip has been

calculated, if the particle lies within the proxy geometry then we compute the influence of

the branch on the particle velocity. The new velocity of particles in the proxy geometry is

computed as follows in equation (6.9):

v
′

i(t) = vi(t)(1− β), (6.9)

where β is a constant decay rate that changes particle velocity based on damping by the tree.

The rate is constant for each branch, but varies due to the size, material, leaf shapes, and other

properties of the tree. We set the reduction rate between 0.02 and 0.05 in most simulations.

This reduction smoothes out the mean velocity over time while the high-frequency details are

compensated from the tke turbulence model.

In the next frame t + 1, we first load the estimated global grid-based wind field

generated from motion capture data. The particle velocity v
′
i(t) from the previous frame is

used as the mean flow velocity to compute the current particle’s turbulent kinetic energy

k(t+ 1). Then we use equation (6.5) to calculate wind velocity V (t+ 1) experienced by the

tree geometry.

The global effect of the tree on the wind is inferred from the motion capture data.

Branches on the leeward side of the tree have less motion. When the particle exits the proxy

geometry, the damping is no longer computed, so the particle velocity is reset to match the

estimated global velocity v.

104

www.manaraa.com

Tree Animation

The movement of the whole tree is computed from the drag force at each branch tip. We use

a damped mass-spring model to define branch dynamics. When the density, stiffness, and

damping coefficients match the estimates used to calculate wind velocity, the resulting motion

is similar to the original motion. The drag forces are calculated for each branch segment.

6.4 Results

We present results that show animation of a tree in wind using a wind velocity field inferred

from motion capture data for a similarly sized tree moving in wind.

We first create a 3D tree shape using particle flow. In Figure 6.6, the small white

cubes on some of the branch tips indicate the location and total number of reflective markers

we capture for the tree. The locations of branch tips that do not correspond to a marker

location are created within the stacked bounding boxes. We generate tree leaves based on

the branching structure and instance leaf size and shape randomly. By the refined bounding

box method, the generated 3D tree shape also is visually similar to the crown shape of the

original tree. The similarity between the generated tree model and the actual tree shape

can be seen in parts (a) and (b) of Figure 6.1. It is significant that the tree shape does not

perfectly match the original tree shape. Applying the motion capture data indirectly as an

inferred wind velocity field, rather than directly as a set of motions, allows for variations in

tree shape and branching structure.

The tke model is a significant part of producing realistic motion. In Figure 6.7, we

compare the results generated with and without turbulent tke. Each figure shows motion

paths from an animation of a tree in wind with and without sub-grid turbulence based on

the tke model. The path on the left includes motion due to sub-grid tke and the path on the

right does not. In both cases, moving branches trace out arcs of similar size as they sway

left and right. Adding tke has the effect of adding variation to each sway motion so that the

arcs are each in a slightly different location. As a result, the motion path on the left, which

105

www.manaraa.com

Figure 6.6: 3D branching structure with marker locations.

Figure 6.7: Branch motion paths with (left) and without (right) sub-grid turbulence. Adding
turbulence adds small variations to each branch sway, as seen in the less compact motion
path on the left.

includes tke, is less compact while the motion path on the right, which does not include tke,

contains many overlapping arcs.

The images in Figure 6.8a and 6.8b compare recorded motion of a tree with motion

generated for a similar tree using the wind field inferred from motion capture data. The

actual tree motion is shown using green traces on the left and the generated motion is shown

on the right. Note that motion is not captured for every branch tip on the left, but motion is

generated for every branch tip on the right. The images have been aligned so that the wind

direction is the same in both cases. Branches in similar positions on the crown have similar

motion.

In Figure 6.9, we demonstrate that our method produces plausible tree sway motion

and results in tree motion effects observed in nature, such as sheltering. Branches bend with

106

www.manaraa.com

(a) Original tree motion. (b) Animated tree motion.

Figure 6.8: Motion paths for the animated tree are similar to motion paths in the original
tree for branch tips at the same relative crown location.

the wind and then return to their rest position. Branch sheltering within a single tree crown

occurs when branches on the leeward side of the crown experience lower wind velocities than

branches on the windward side because drag exerted by the windward branches reduces the

wind velocity. In the figure, the dominant wind direction is from left to right and from the

lower left corner. We can observe that branches, which are on the left side (the windward

side), have bigger amplitude of motion than others. Besides completing tree motion of a

single similar tree with partial motion capture data, our method can also be extended to

create tree motion for multiple trees using the wind field. The trees in Figure 6.10 move

in the same wind field. Although this creates the appearance of a group of trees moving

in a shared environment, wind is not damped as it passes from one tree to another. In the

video clip attached to this paper, we provide a side-by-side comparison of the video originally

recorded during the motion capturing process and the synthesized tree animation. From the

video, we can observe that sheltering effects among branches are successfully simulated.

6.5 Discussion and Future Work

We have presented animation of non-rigid bodies using partial motion capture data by

extracting a wind velocity field rather than replaying motion data directly. This simplifies

the problem as we no longer need to match motion capture data to a precise reconstruction of

107

www.manaraa.com

Figure 6.9: Several frames from the animation of a maple tree in a wind field extracted from
motion capture data.

Figure 6.10: Multiple trees swaying in wind field estimated from the motion of a single tree.

the original capture subject. It also results in complete and coherent motion from incomplete

data that contains discontinuous motion. We have also presented a method for enriching

the extracted force field to include fine-resolution turbulence. This is possible because the

extracted velocity field can be analyzed and enriched, much like position graphs can be

analyzed and enriched in other applications.

108

www.manaraa.com

This work opens a new direction in the motion capture of non-rigid bodies in spatially

smooth force fields. We have investigated this idea in the context of trees and wind. Future

work might focus on other objects, such as cloth, in other flows.

109

www.manaraa.com

Chapter 7

Discussion and Conclusion

The research builds a new model of motion capture for non-rigid bodies under external

forces. From partially recorded movements on non-rigid subjects, we create complete anima-

tions of these or similar subjects using physical and statistical models. We present a generic

pipeline for capturing movements of non-rigid bodies using passive optical motion capture.

We have demonstrated animation of non-rigid bodies using partial motion capture data by

extracting external forces rather than replaying motion data directly. The approach simplifies

the problem as we no longer need to match motion capture data to a precise reconstruction of

the original capture subject. It also results in complete and coherent motion from incomplete

data that contain discontinuous motion.

Chapter 2 reconstructs tree motion under natural wind. It builds a plausible tree

skeleton using a minimal spanning tree algorithm over a cost function defined using position

and motion data. Gaps and errors in motion capture data for trees are replaced with data

interpolated from neighboring branch motion. These are important steps toward realizing

motion capture of trees for tree animation in games. We had hoped to get better results

with the repaired data and the rigid body algorithm we used. Based on the results of this

pilot project, we believe that investigating other approaches to processing the point cloud are

more promising than repairing the errors caused by using the rigid body algorithm we used.

In Chapter 3, our work produces visually plausible rope motion from passive optical

motion capture data using a statistical model under the assumption that the rope does not

stretch. The algorithm preserves continuity of motion in traces and fits the shape of rope.

110

www.manaraa.com

This work lays a foundation for further investigation of motion capture for non-rigid bodies

using statistical rather than physical models. The approach to the problem may advance

motion capture results for non-rigid bodies driven by complex or poorly understood physical

systems.

Chapter 4 generates a 3D tree model using particle flow along with motion capture

data. The particle flow system starts from recorded branch tip positions supplemented with

additional random branch tip positions within a horizontal stack of bounding boxes and by

setting two control parameters. A new data collection process designed for trees may extend

the use of motion capture to include trees and, eventually, other networks of non-rigid bodies.

Chapter 5 introduces a new method based on L-systems for 3D tree modeling. This

new method employs a moving particle for a branch unit, which reduces computation time

compared to diffusion-limited aggregation. We control the main crown shapes with the

hemisphere while controlling the internal growth structure using growth levels. Under these

controls, randomness is added by randomly selecting tree branches from the L-systems branch

library. By introducing the random factors, it is difficult to produce the exact shape of the

original tree. Also, small changes in parameters might produce big changes in the output

tree shape, which is a common problem when employing L-systems.

Chapter 6 is based on all of the previous work in our research. In this project, we

present animation of non-rigid bodies using partial motion capture data by extracting a wind

velocity field rather than replaying motion data directly. This simplifies the problem as we no

longer need to match motion capture data to a precise reconstruction of the original capture

subject. It also results in complete and coherent motion from incomplete data that contains

discontinuous motion. We have also presented a method for enriching the extracted force

field to include fine-resolution turbulence. This is possible because the extracted velocity

field can be analyzed and enriched, much like position graphs can be analyzed and enriched

in other applications. This work opens a new direction in the motion capture of non-rigid

bodies in spatially smooth force fields. We have investigated this idea in the context of trees

111

www.manaraa.com

and wind. Future work might focus on other objects, such as cloth, in other flows. We can

also extend the process to larger trees outdoors.

As inferred from the rope reconstruction project, complicated motions (such as spirals,

collisions, sudden changes in movement, or extremely fast movement) are not well handled in

our model. Our assumptions for detecting swaps may be oversimplified relative to natural

movement. In the future, consideration of other factors, such as velocity or acceleration, might

improve gap-filling results. We have used a simple method for interpolating rope position

between markers. More complex methods may result in more plausible results, particularly

when the distance between markers on the rope is large.

Our research discusses animating non-rigid bodies using motion capture, but mostly

focuses on replaying motion for trees and ropes. We present a general application of motion

capture for non-rigid bodies, including a data collection process and data cleaning algorithms.

The work can be extended to non-rigid bodies other than trees and ropes. By emphasizing

different non-rigid subjects under various force fields, followed by our general application

of motion capture, the data cleaning algorithms can be improved with the context, and

different physical and/or statistical models might be required to build an animation. Besides

building animations that replay the original movements, resulting estimated motion can also

validate the real collected data against theoretic physical and/or statistical models. Therefore,

the presented application of motion capture for non-rigid bodies can go further in different

research areas and become a useful tool in these areas.

112

www.manaraa.com

References

[1] Yasuhiro Akagi and Katsuhiro Kitajima. Computer animation of swaying trees based on

physical simulation. Computers and Graphics, 30(4):529–539, 2006.

[2] Masaki Aono and Tosiyasu Kunii. Botanical tree image generation. IEEE Computer

Graphics Applications, 4(5):10–34, 1984.

[3] Jernej Barbic and Yili Zhao. Real-time large-deformation substructuring. ACM Trans-

actions on Graphics, 30(4):91:1–91:7, 2011.

[4] Kiran S. Bhat, Christopher D. Twigg, Jessica K. Hodgins, Pradeep K. Khosla, Zoran

Popovi, and Steven M. Seitz. Estimating cloth simulation parameters from video. In

Proceedings of the Eurographics Symposium on Computer Animation, pages 37–51, 2003.

[5] Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy, Hanspeter

Pfister, and Markus Gross. Multi-scale capture of facial geometry and motion. ACM

Transactions on Graphics, 26:33–41, 2007.

[6] Yung-Yu Chuang, Dan B. Goldman, Ke C. Zheng, Brian Curless, David H. Salesin, and

Richard Szeliski. Animating pictures with stochastic motion textures. ACM Transactions

on Graphics, 24(3):853–860, July 2005.

[7] Phillippe de Reffye, Claude Edelin, Jean Francon, Marc Jaeger, and Claude Puech.

Plant models faithful to botanical structure and development. In Proceedings of the 15th

Annual Conference on Computer Graphics and Interactive Techniques, pages 151–158,

1988.

[8] Julien Diener, Lionel Reveret, and Eugene Fiume. Hierarchical retargetting of 2d motion

fields to the animation of 3d plant models. In Proceedings of the Eurographics Symposium

on Computer Animation, pages 187–195, 2006.

[9] Julien Diener, Mathieu Rodriguez, Lionel Baboud, and Lionel Reveret. Wind projection

basis for real-time animation of trees. In Proceedings of the Eurographics Symposium on

Computer Animation, pages 533–540, March 2009.

113

www.manaraa.com

[10] Melanie Ganz, Marco Loog, Sami Brandt, and Mads Nielsen. Dense iterative contextual

pixel classification using kriging. In Proceedings of the Computer Vision and Pattern

Recognition Workshops, volume LNCS 5519, pages 87–93, June 2009.

[11] Ralf Habel, Alexander Kusternig, and Michael Wimmer. Physically guided animation of

trees. In Proceedings of the Eurographics Symposium on Computer Animation, pages

523–532, March 2009.

[12] Jody D. Jesser and Lisa Fitzpatrick. The Making of Avatar. Abrams, 2010.

[13] Wenguang Jiang, Minsi Yao, and James M. Walton. A concise finite element model for

simple straight wire rope strand. International Journal of Mechanical Sciences, 41(2):

143–161, 1999.

[14] Sathiya S. Keerthi, Shirish Shevade, Chiranjib Bhattacharyya, and Krishna K.R. Murthy.

Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Computation,

13(3):637–649, March 2001.

[15] Theodore Kim, Jason Sewall, Avneesh Sud, and Ming Lin. Fast simulation of Laplacian

growth. IEEE Computer Graphics and Applications, 27(2):68–76, 2007.

[16] Adam G. Kirk, James F. O.Brien, and David A. Forsyth. Skeletal parameter estimation

from optical motion capture data. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 782–788, June 2005.

[17] Winfried Kurth and Branislav Sloboda. Growth grammars simulating trees-an extension

of L-systems incorporating local variables and sensitivity. Silva Fennica, 31(3):285–295,

1997.

[18] Nipun Kwatra, Chris Wojtan, Mark Carlson, Irfan Essa, Peter J. Mucha, and Greg

Turk. Fluid simulation with articulated bodies. IEEE Transactions on Visualization

and Computer Graphics, 16:70–80, 2010.

[19] Chuan Li, Oliver Deussen, Yi-Zhe Song, Phil Willis, and Peter Hall. Modeling and

generating moving trees from video. ACM Transactions on Graphics, 30:127:1–127:12,

2011.

[20] Aristid Lindenmayer. Mathematical models for cellular interaction in development: Parts

I and II. Journal of Theoretical Biology, 18(3):280–315, March 1968.

[21] Bernd Lintermann and Oliver Deussen. Interactive modeling of plants. IEEE Computer

Graphics Applications, 19(1):56–65, January 1999.

114

www.manaraa.com

[22] Guodong Liu and Leonard McMillan. Estimation of missing markers in human motion

capture. The Visual Computer, 22(9):721–728, September 2006.

[23] Jie Long, Cory Reimschussel, Ontario Britton, Anthony Hall, and Michael Jones. Motion

capture for a natural tree in the wind. In Proceedings of the Third International

Conference on Motion in Games, pages 158–169, 2010.

[24] Manuel S. Lorenzo, Manuel Sonchez, Lorenzo James, James D. Edge, Scott A. King,

and Steve Maddock. Use and re-use of facial motion capture data. In Proceedings of the

Vision, Video and Graphics Conference, pages 135–142, July 2003.

[25] Hui Lou and Jinxiang Chai. Example-based human motion denoising. IEEE Transactions

on Visualization and Computer Graphics, 16(5):870–879, September 2010.

[26] WanChun Ma, Andrew Jones, JenYuan Chiang, Tim Hawkins, Sune Frederiksen, Pieter

Peers, Marko Vukovic, Ming Ouhyoung, and Paul Debevec. Facial performance synthesis

using deformation-driven polynomial displacement maps. ACM Transactions on Graphics,

27:121:1–121:10, December 2008.

[27] Volker S. Marcus and Marcus A. Magnor. Cloth motion from optical flow. In Proceedings

of the 9th International Fall Workshop on Vision, Modeling and Visualization, pages

117–124, 2004.

[28] Radomir Mech and Przemyslaw Prusinkiewicz. Visual models of plants interacting with

their environment. In Proceedings of the 23rd Annual Conference on Computer Graphics

and Interactive Techniques, pages 397–410, New York, NY, USA, 1996.

[29] Boris Neubert, Thomas Franken, and Oliver Deussen. Approximate image-based tree-

modeling using particle flows. ACM Transactions on Graphics, 26(3):88:1–88:11, July

2007.

[30] Hiromi Ono. Practical experience in the physical animation and destruction of trees. In

Proceedings of the 8th Eurographics Workshop on Computer Animation and Simulation,

pages 149–159. Springer, Budapest, Hungary, 1997.

[31] Peter E. Oppenheimer. Real time design and animation of fractal plants and trees.

In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive

Techniques, pages 55–64, New York, NY, USA, 1986.

[32] Shin Ota, Tadahiro Fujimotoa, Machiko Tamura, Kazunobu Muraoka, Kunihiko Fujita,

and Norishige Chiba. 1/fβ noise-based real-time animation of trees swaying in wind

115

www.manaraa.com

fields. In Proceedings of the Computer Graphics International Conference, pages 52–59,

July 2003.

[33] Shin Ota, Machiko Tamura, Tadahiro Fujimoto, Kazunobu Muraoka, and Norishige

Chiba. A hybrid method for real-time animation of trees swaying in wind fields. The

Visual Computer, 20(10):613–623, 2004.

[34] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane, Radomr

Mech, and Przemyslaw Prusinkiewicz. Self-organizing tree models for image synthesis.

ACM Transactions on Graphics, 28(3):58:1–58:10, July 2009.

[35] Sang II. Park and Jessica K. Hodgins. Capturing and animating skin deformation in

human motion. ACM Transactions on Graphics, 25(3):881–889, July 2006.

[36] Jari Perttunen, Risto Sievanen, and Eero Nikinmaa. Lignum: a model combining the

structure and the functioning of trees. Ecological Modelling, 108(1-3):189–198, 1998.

[37] Tobias Pfaff, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross. Scalable

fluid simulation using anisotropic turbulence particles. ACM Transactions on Graphics,

pages 174:1–174:8, 2010.

[38] John C. Platt. Fast training of support vector machines using sequential minimal

optimization. Advances in Kernel Methods: Support Vector Learning, pages 185–208,

1999.

[39] Stephen B. Pope. Turbulent Flows, chapter 10, pages 373–382. Cambridge University

Press, 2000.

[40] David Pritchard and Wolfgang Heidrich. Cloth motion capture. In Proceedings of the

ACM SIGGRAPH Sketches and Applications, volume 22, pages 263–271, New York, NY,

USA, 2003.

[41] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants.

Springer-Verlag New York, Inc., New York, NY, USA, 1990.

[42] Przemyslaw Prusinkiewicz, Mark S. Hammel, and Eric Mjolsness. Animation of plant

development. In Proceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques, pages 351–360, New York, NY, USA, 1993.

[43] Przemyslaw Prusinkiewicz, Lars Mundermann, Radoslaw Karwowski, and Brendan Lane.

The use of positional information in the modeling of plants. In Proceedings of the 28th

116

www.manaraa.com

Annual Conference on Computer Graphics and Interactive Techniques, pages 289–300,

New York, NY, USA, 2001.

[44] Stjepan Rajko and Gang Qian. Real-time automatic kinematic model building for optical

motion capture using a Markov random field. In Proceedings of the IEEE International

Conference on Human-Computer Interaction, pages 69–78, Berlin, Heidelberg, 2007.

[45] Alex Reche-Martinez, Ignacio Martin, and George Drettakis. Volumetric reconstruction

and interactive rendering of trees from photographs. ACM Transactions on Graphics,

pages 720–727, 2004.

[46] William T. Reeves. Particle systems A technique for modeling a class of fuzzy objects.

In Proceedings of the 10th Annual Conference on Computer Graphics and Interactive

Techniques, pages 91–108, New York, NY, USA, April 1983.

[47] William T. Reeves and Ricki Blau. Approximate and probabilistic algorithms for shading

and rendering structured particle systems. In Proceedings of the 12th Annual Conference

on Computer Graphics and Interactive Techniques, pages 313–322, New York, NY, USA,

1985.

[48] Bodo Rosenhahn, Uwe G. Kersting, Andrew W. Smith, Jason. K. Gurney, Thomas Brox,

and Reinhard Klette. A system for markerless human motion estimation. In Proceedings

of the 27th Conference on Pattern Recognition, pages 230–237, Berlin, Heidelberg, 2005.

[49] Mark Rudnicki and D. Burns. Branch sway period of 4 tree species using 3-d motion

tracking. In Proceedings of the Fifth Plant Biomechanics Conference, pages 25–30,

Stockholm, Sweden, 2006.

[50] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. Modeling trees with a

space colonization algorithm. In Proceedings of the Eurographics Workshop on Natural

Phenomena, pages 63–70, 2007.

[51] Anthony Selino and Michael Jones. Large and small eddies matter: Animating trees in

wind using coarse fluid simulation and synthetic turbulence. Computer Graphics Forum,

24:417–425, July 2012.

[52] Mikio Shinya and Alain Fournier. Stochastic motion motion under the influence of wind.

In Proceedings of the Eurographics Symposium on Computer Animation, volume 11,

pages 119–128, 1992.

117

www.manaraa.com

[53] Ilya Shlyakhter, Max Rozenoer, Julie Dorsey, and Seth Teller. Reconstructing 3d tree

models from instrumented photographs. IEEE Computer Graphics and Application, 21

(3):53–61, May 2001.

[54] Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. Automatic determination of facial

muscle activations from sparse motion capture marker data. ACM Transactions on

Graphics, 24(3):417–425, 2005.

[55] Emil Simiu and Robert H. Scanlan. Wind Effects on Structures: Fundamentals and

Applications to Design. Number V. 1 in Wiley-Interscience Publication. John Wiley,

1996.

[56] Jos Stam. Stochastic dynamics: Simulating the effects of turbulence on flexible structures.

Computer Graphics Forum, 16(3):159–164, 1997.

[57] Meng Sun, Allan D. Jepson, and Fiu Eugene. Video input driven animation. In

Proceedings of the 9th IEEE International Conference on Computer Vision, volume 2,

pages 96–106, Washington, DC, USA, 2003.

[58] Ping Tan, Gang Zeng, Jingdong Wang, Sing Bing Kang, and Long Quan. Image-based

tree modeling. ACM Transactions on Graphics, 26(3):87, 2007.

[59] Tamas Vicsek. Fractal Growth Phenomena. World Scientific Publishing Co Pte Ltd; 2nd

edition, 1991.

[60] Jason Weber and Joseph Penn. Creation and rendering of realistic trees. In Proceedings

of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pages

119–128, New York, NY, USA, 1995.

[61] Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative analysis and perfor-

mance study for similarity-search methods in high-dimensional spaces. In Proceedings

of the 24th International Conference on Very Large Data Bases, pages 194–205, San

Francisco, CA, USA, 1998.

[62] Gaojin Wen, Zhaoqi Wang, Shihong Xia, and Dengming Zhu. From motion capture

data to character animation. In Proceedings of the ACM Symposium on Virtual Reality

Software and Technology, pages 165–168, New York, NY, USA, 2006.

[63] Ryan White, Keenan Crane, and D. A. Forsyth. Capturing and animating occluded

cloth. ACM Transactions on Graphics, 26:34:1–34:9, 2007.

118

www.manaraa.com

[64] Marcel Worring, Pia Pfluger, Arnold Houtsmuller, and Adriaan Houtsmuller. Measure-

ment of 3d line shaped objects. Pattern Recognition Letters, 15:497–506, 1994.

[65] Enhua Wu, Yanyun Chen, Tao Yan, and Xiaopeng Zhang. Reconstruction and physically-

based animation of trees from static images. In Proceedings of the Eurographics Sympo-

sium on Computer Animation and Simulation, pages 157–166, Milano, Italy, September

1999.

[66] Hongping Yan, Philippe De Reffye, Jonathan Leroux, and Baogang Hu. Study on plant

growth behaviors simulated by the functional-structural plant growth model — greenlab.

In Proceedings of the Plant Modeling, Visualization, and its Applications, pages 118–125,

October 2003.

[67] Long Zhang, Chengfang Song, Qifeng Tan, Wei Chen, and Qunsheng Peng. Quasi-

physical simulation of large-scale dynamic forest scenes. In Proceedings of the 24th

Computer Graphics International Conference, pages 735–742, Hangzhou, China, June

2006.

[68] Victor B. Zordan and Nicholas C. Van Der Horst. Mapping optical motion capture data

to skeletal motion using a physical model. In Proceedings of the Eurographics Symposium

on Computer Animation, pages 245–250, Aire-la-Ville, Switzerland, Switzerland, 2003.

119

